AREG Christmas Meeting – A35JT DXpedition

The next meeting of the Amateur Radio Experimenters Group will be held on Friday December 13th. Doors will open for members and visitors at 7.15pm. The main presentation will be given by the A35JT DXpedition team comprising Grant VK5GR, Andrew VK5AKH, Olgierd VK5XDX and Steve VK5SFA who last month completed a 14 month DXpedition project culminating in the 2 week activation of Tonga in the South Pacific.

AREG members are also invited to attend the club Christmas Dinner which starts at 6.00pm. Details have been sent to members via the club email reflector.

The club meets at the Fulham Community Centre, Phelps Court, Fulham.

We hope to see you there!

 

The 2019 Bridgestone World Solar Challenge – Next AREG Meeting 15th November!

The Flinders University Automotive Solar Team, and their Solar Car

The next meeting of the Amateur Radio Experimenter’s Group will be held on Friday November the 15th. This month’s presentation is “The 2019 Bridgestone World Solar Challenge”, by Kim VK5FJ.

Kim will discuss the event, what is involved in building a solar car, getting a team together, the trials and tribulations of qualifying, and then finally the “race”. This year after a number of subtle but technically challenging rule changes, teams also had to deal with some particular difficult weather conditions. Come along to see why it is more than just a design and engineering challenge!

AREG meets at the Fulham Community Centre, Phelps Court, Fulham. Doors open at 7.15pm with the meeting starting at 7.45pm sharp. Visitors are most welcome!

Morse Code for Beginners – Next AREG Meeting 18th October

CW Pileup

The next meeting of the Amateur Radio Experimenter’s Group will be held on Friday October the 18th. This month’s presentation is “Morse Code (CW) for Beginners“, by Chris VK5SA, and Theo VK5IR. Chris will discuss tips and tricks for working DXpeditions and other rare DX stations, and Theo will talk on improving your receive speed.

AREG meets at the Fulham Community Centre, Phelps Court, Fulham. Doors open at 7.15pm with the meeting starting at 7.45pm sharp. Visitors are most welcome!

Horus 53 – Flight Report

Horus 53 was the first launch in the Project Horus Member Payload launch program, which features new payloads developed by AREG club members. This launch’s payload was the brainchild of Derek VK5TCP, and was a Hak5 ‘WiFi Pineapple’, a wireless penetration testing device which was configured to log all WiFi access points it observed, but also broadcast a WiFi access point for observers to try and connect to. Also flying was the usual array of telemetry beacons, and a Wenet imagery payload.

Launch preparations went smoothly, and with excellent (if maybe a little cold) weather, Horus 53 was launched just after 10AM on the 25th of August 2019, by the youngest member of the launch crew – Tom:

Launch of Horus 53! (Photo credit Gerard VK5ZQV)

With launch complete, the balloon filling gear was quickly packed up and the chase teams departed. Chasing the balloon this flight was:

  • Team QI: Mark VK5QI, Will VK5AHV and Chris VK5FR
  • Team Derek: Derek VK5TCP and Derek VK5RX
  • Team LJG: Liam VK5LJG (Solo)
  • Team WTF: Marcus VK5WTF + IMD product

While Mark, Derek and Liam’s teams were focused on recovering the payloads, Marcus’s aim was to situate himself directly under the balloon flight path and try and connect to the flying WiFi access point (more on this later!).

The chase on this flight was fairly uneventful – the balloon ascended as planned, and burst at an altitude of 31.659km. The chase teams headed out along the Karoonda highway, and were able to get well ahead of the balloon and wait near the predicted landing site.

View of the chase-car mapping software near the end of the flight, as is used by the chase teams to navigate.

All throughout the flight the Wenet payload was downlinking stunning imagery of the state:

This slideshow requires JavaScript.

With the permission of the landowner, the chase teams were able to access the property where the payloads were predicted to land, and positioned themselves to try and watch the landing. Unfortunately the wind model was incorrectly predicting the ground-level winds as being higher than they really were, and the payloads dropped almost straight down for the last 500m or so, to land right in a tree right next to the road the chase teams had just been on 5 minutes earlier! The Wenet payload was hanging nicely in a tree, and was able to capture images of the chase teams arriving on-site just a few minutes after landing.

This slideshow requires JavaScript.

All the payloads (and quite a bit of the balloon…) were accounted for and in good condition, though the wind-vane that adorned Derek’s WiFi Pineapple payload was nowhere to be seen, and likely tore off at balloon burst.

The chase team with the recovered payloads. (Marcus VK5WTF behind the camera)

WiFi Pineapple Payload Results

Derek’s payload performed perfectly throughout the flight, though the narrow beam-width of the antenna used on it did mean it only saw a few tens of WiFi access points. mainly near the beginning and end of the flight. The WiFi access point was connected to successfully during the flight by Marcus VK5WTF, who recounts his experience below:

Equipment at my end was a Linux laptop running Kismet software, with a USB WiFi adaptor (AWUS036H) plugged into a 2.4 GHz gridpack I picked up a Gippstech two years ago. As a backup I also took my own WiFi Pineapple Nano, just to send out SSID beacons for the payload to pick up.

Looking at the predicted path I marked a few places I could use as ground stations, mostly around the Karoonda Hwy. The plan was to set up a table and lay the gridpack on its back pointing straight up, and I found the perfect sized plastic tub to do the job.

First location was the Sunnyside Lookout north of Murray Bridge. Here I could test scanning for the payload and have a first attempt at connecting to it.

At this location I was also getting a lot of other WiFi Access Points that would have been de-sensing the receiver, and the poor front to back of the gridpack antenna would have also been an issue.

After roughly 15 minutes I got my first glimpse of the payload in Kismet as it was going through the 13 km mark somewhere above my head. When I saw VK5ARG come up on my screen, I definitely got excited, the theoretical is reality. But the two minutes I spent checking everything, I lost valuable time before attempting a connection. It was at the peak of its pass when I started (10:54 ACST), and my log shows I made several associations but near immediate drop out, like it was getting about a 0.5-2Hz spin, “:20 trying to associate”, “:20 associated”, “:21 disconnected” occurred 24 times in the log over roughly 70 seconds.

Off to site two, and the current prediction had it going over the site of the old Kulde train station, so that’s where I headed. Once set up, I found that I had enough phone reception to see where the balloon was, but I didn’t need it, Kismet was seeing the SSID already, time to attempt a connection. Height was about 7km, and it was flying about 4 km by ground west north west of me.

In and connected first try (12:09 ACST), but not getting a lot of data, then the connection dropped, likely still spinning, lets try again… Bam, I’m in! From here the connection stayed up and was strong until it started raining and I disconnected everything; but I was connected for around 3 minutes. At the time I disconnected the height was 4.6 km, and by ground the payload was around 3km north east. Remember that my antenna was pointed straight up in the opposite direction of gravity.

What was I doing with that couple of minutes? Solving the encrypted messages left on the homepage of the Pineapple.

The first was “SGFtIFJhZGlvIGlzIGdyZWF0Lg==”. Easy peasy, base64, answer: “Ham Radio is great.”

The second was a little more difficult, mainly because there wasn’t a command line linux application to do the job for me. The cipher text: “Cjmpn ovfzn Cvh Mvydj dioj ocz nft rdoc Kdizvkkgzn.” Immediately this looked like a rotation (Caesar) cipher maybe ROT13, so I started writing something in Python; and then the rain came, so cancel that! When I got home, I put a little more work into the second cipher, and the characters where shifted by 5, to reveal the answer “Horus takes Ham Radio into the sky with Pineapples.”

Great job Marcus! Derek is currently working on an upgraded version of this payload with a newer WiFi Pineapple model and better antennas, so it’s likely we’ll be trying this again in the future.

Telemetry Statistics

Once again, we had a great showing of amateur radio operators from around the state receiving telemetry form the balloon, including a few new callsigns decoding the Wenet imagery.

The statistics from the various payloads flown are shown in the tables below:

RTTY Payload

CallsignReceived PacketsPercentage of Flight ReceivedFirst-Received Altitude (m)Last-Received Altitude (m)
VK5APR73662.5%15834746
VK5EU43837.2%125491829
VK5EU-379767.7%77772173
VK5KX-0194480.1%17724598
VK5MHZ65855.9%14256152
VK5QI-984071.3%35324
VK5ST-283671.0%36942173
VK5TRM97782.9%29842780
VK5ZEA50.4%99539063
VK5ZRL-0182469.9%27045354
VK5ZRL-0286573.4%24616214

4FSK (Horus Binary) Payload

CallsignReceived PacketsPercentage of Flight ReceivedFirst-Received Altitude (m)Last-Received Altitude (m)
HWK23311.8%189804215
VK5HS115658.9%105002323
VK5KJP41521.2%67352147
VK5KX-2173888.6%11664157
VK5LJG-9122862.6%187765
VK5NEX161082.1%28804558
VK5QI-9153378.2%35165
VK5ST-1144473.6%32901512
VK5ST-2168786.0%30611911
VK5TRM-12174388.9%18141413
VK5WTF402.0%1263113389

Wenet Imagery Payload

CallsignPackets ReceivedTotal Data Received (MiB)
VK5APR20654650.43
VK5DSP239175.84
VK5EU65611.60
VK5EU-2291877.13
VK5FISH15157437.01
VK5QI (Mobile)11873028.99
VK5KX13366732.63

Thanks to all who participated in receiving the telemetry from this flight – all uploads are much appreciated, and help make the flight much more enjoyable for those spectating from home.

Conclusion

Thanks again to all involved with preparation, launch, tracking and chasing. With an influx of interest in this aspect of the amateur radio hobby, we’re hoping to ramp up the frequency of Project Horus launches, but to do this we need your payload ideas to launch! If you have a payload you would like to fly, take a look at the Project Horus Member Payload Launch Program page and let us know your ideas!

Catch you all at the next flight! 73 VK5QI

Horus 53 - Flight Statistics

MetricResult
Flight Designation:Horus 53
Launch Date:2019-08-25 00:35:51Z
Landing Date:2019-08-25 02:53:17Z
Flight Duration:2 Hours 18 Minutes
Launch Site:-35.07668,138.85643
Landing Site:-35.12053,139.70958
Distance Traveled:78 km
Maximum Altitude:31,645 m

How to Home Brew a 20-6m HexBeam for HF – Next AREG Meeting

The next meeting of the Amateur Radio Experimenter’s Group will be held on Friday September 20th. The presentation tonight will be given by Theo VK5IR who will take us through what he has learned as he has set to home brewing his 20-6m HexBeam antenna. The HexBeam antenna design is well known to many in AREG but Theo is the first in the club to home brew one. This could kick off a whole new round of antenna construction experimentation at the club!

AREG meets at the Fulham Community Centre, Phelps Court, Fulham. Doors open at 7.15pm with the meeting starting at 7.45pm sharp. Visitors are most welcome!

Project Horus #53 Launch Announcement – 10AM Sunday 25th August

UPDATE: Launch was a complete success! A full write-up will be coming in due course…

The next Project Horus launch is currently planned to fly on Sunday the 25th of August(weather permitting), with a planned launch time of 10AM. As usual, there’s always the chance the weather for the planned launch date may not be suitable, so if necessary, the backup launch date will be Sunday the 1st of September.

The launch site will be the usual Mt Barker High School Oval. Launch crews should be on-site around 9AM. If you haven’t attended one of our launches before, this is a great opportunity to come along and see what’s involved first-hand!

WiFi Pineapple Payload

WiFi Pineapple

This flight will be the first of hopefully many more payloads proposed and developed by AREG club members under the Project Horus Member Payload Launch Program. Derek VK5TCP’s payload is a WiFi Pineapple board – a WiFi penetration testing device developed by Hak5. The payload will be ‘war-ballooning‘ throughout the flight, recording the SSID of all WiFi access points it can receive signals from. It will also be broadcasting an open WiFi access point (‘VK5ARG’) on the 2.4 GHz band. The payload will be using a ~11 dBi patch antenna pointed directly downwards.

To encourage community participation in this launch, there are two challenges associated with this payload:

  1. Get your Access Point SSID observed by the payload! – Set up a WiFi Access point connected to a high gain antenna pointed at the payload. After the flight we will publish a list of all SSID’s that were observed, and at what altitude they were spotted. For your best chance at being observed, beacon using the lower-speed 802.11b mode.
  2. Recover the secret message! – Connect to the access point on the balloon while it is in flight and retrieve a secret message from a web server running on the payload. This will be a serious challenge to achieve, and will require the use of high-gain antennas on the ground. Our link budgeting suggests that the full 4W of allowable LIPD Class License EIRP will be required to connect to the payload. Amateur radio operators with an advanced license are permitted to use any power level up to the limits of their license conditions. The web server will be running on the IP address 172.16.42.1, and clients can either accept a DHCP lease, or use a static IP address between 172.16.42.150 and 172.16.42.200.

To have the highest chance of success, stations will need to be situated directly underneath the flight path, with antennas pointing upwards to the payload. A map of the predicted flight path will be posted closer to the launch date.

Wenet Imagery Payloads

Image received via the Wenet Payload

This flight will also fly a ‘Wenet’ high-speed imagery payload, as have been flown on many previous Horus launches. The centre frequencies for this transmission will be 441.200 MHz. This payload will be downlinking HD pictures throughout the flight, which will be available at this link:

http://ssdv.habhub.org/

Reception of the Wenet signal requires a RTLSDR and a Linux PC/Laptop. Instructions on how to set up the required software are available here.

 

Telemetry Payloads

As always, we’ll be flying the usual assortment of telemetry payloads, including:

  • Our usual 100 baud 7N2 RTTY telemetry on 434.650 MHz USB. This can be decoded using dl-fldigi, with a reception guide available here. Recent testing of dl-fldigi’s decode performance has found that the auto-configured RTTY receive bandwidth is too narrow, and can detrimentally impact decode performance (by up to 3dB!).To fix this, open dl-fldigi, and in the Configure menu, select Modems, and then go to the ‘RTTY’ tab. Drag the ‘Receive filter bandwidth’ slider to 200, then click ‘Save’. Note that this setting will be reset whenever you hit the ‘Auto-Configure’ button!
  • 4FSK Telemetry decoder

    The new 4FSK Binary telemetry will be transmitting on 434.660 MHz USB. This uses a separate decoder, with setup instructions for this available here. This telemetry payload will soon become the primary method of tracking the flight – the RTTY payload is expected to be retired in a few launches time.

 

Tracking of the flight will be available on the HabHub Tracker, available at this link. (Note that other balloon launches will also be visible on this page, including the Bureau of Meteorology launches from Adelaide Airport).
Follow the #horus53 hashtag on Twitter for updates from the launch and chase teams on the launch day.
Stay tuned for updates closer to the launch date…
73
Mark VK5QI

AREG Annual General Meeting – Friday August 16th 7.45pm

The Amateur Radio Experimenters Group Inc will hold it’s Annual General Meeting on Friday August 16th, at the Fulham Community Centre, Phelps Court, Fulham, starting at 7.45pm.

The AGM will recap the year that was for AREG with the presentation of the reports by the committee. All positions will then be declared vacant, and the election of the office bearers and committee will be held.

After the AGM, refreshments will be served and there will be ample opportunity to socialise and talk about the exciting year ahead!

Visitors are always welcome! We hope to see you there!

Next AREG Meeting: RF Transformers – Theory into Practice – July 19th

The next meeting of the Amateur Radio Experimenters Group will be held on Friday July 19th. Doors open at 7.15pm with the presentations starting from 7.45pm.

AREG is very pleased to announce that our guest speaker for the evening is Neil Abraham VK5KA.

Neil has a lifetime’s experience designing RF transformers (among many other things) for a prominent  commercial HF radio manufacturer here in South Australia. In this presentation, Neil will open a window into the world of RF transformers and impedance matching, showing how they can be used in your every day amateur radio station experiments.

Neil says the following about his presentation:

  • I am not going to cover every thing there is to know about RF transformers.
  • I hope to give you enough info so you can design and make your own transformers.
  • I am going to limit this to transformers that are used  to help match HF antennas and feed lines.

If ever you have experimented or had a desire to experiment with designing your own antennas, invariably at some point you will face the issue of how to match that antenna to your transmitter. This presentation will be a great introduction to this most useful aspect of the radio art-form.


Visitors are most welcome! Following Neil’s talk, there will be a short business meeting, followed by tea, coffee and cake and a chance to talk about your own antenna matching challenges with Neil. We hope to see you at the club!

Where do we meet?

AREG meetings at the Fulham Community Centre (formerly known as the Reedbeds Community Centre), on Phelps Court in Fulham.