UPDATE: Horus 50 High Altitude Balloon Flight this SUNDAY!

Preparations continue for the Horus 50 high altitude balloon flight celebrating the 20th Anniversary of AREG. This radio experimenters flight is planned for launch this Sunday, the 4th of November at 10am CDST (2330Z). The latest flight path prediction is shown below. Full details of the flight can be found (here)

UPDATE: 3rd November 2018 – Predictions still looking good!

Tracking will be available via habhub.org

As a quick reference, the flight will have the following transmitters:

  • 147.500MHz Downlink / 438.900MHz Uplink (with 123Hz CTCSS) Repeater
  • 145.100MHz Slow Scan TV Downlink
  • 145.175MHz APRS Tracking Beacon
  • 434.650MHz 100baud RTTY Telemetry
  • 434.640MHz 4FSK Binary Telemetry (uses the latest FreeDV software to decode)

Stay tuned for more details and refer to the main news story (herefor information on how you can participate in this event!

AREG’s 20th Anniversary Event – Horus 50 Balloon Launch – 4th November 2018

2018 marks 20 years since the Amateur Radio Experimenters Group was formed. To celebrate this milestone, the club is planning to fly a special Amateur Radio focused high altitude balloon in what will be the 50th Project Horus Mission.

The Project Horus team itself is also celebrating 8 years in the air! Project Horus was founded by Terry Baume and continues to perform regular high-altitude balloon launches from locations around South Australia under the auspices of the Amateur Radio Experimenters Group.

When will this be happening? Currently it is planned to fly on Sunday the 4th of November (weather permitting). Liftoff is planned for 10AM ACDT. We are going for altitude so coverage will hopefully extend as far as Melbourne at the peak of the flight.

The goal is to engage with amateur radio in as many ways as possible. We want you to talk through the balloon, see the world from the balloon’s perspective and know where the balloon is during the flight! How can you do all this you might ask? The Project Horus team have specifically tailored this flight to include:

  • a 2m (down) / 70cm (up) Cross-band FM repeater. Amateurs within the repeater footprint will be able to make live QSOs with the club station VK5ARG and each other via the FM repeater using relatively modest stations.
  • a 2m SSTV beacon transmitting images from the balloon live during the flight. You will be able to see the world from the balloon’s perspective using a 2m receiver and simple software (you can even use an app on your phone).
  • Track the balloon via a 2m APRS beacon during the flight!

The launch site will be the usual Mt Barker High School Oval. Launch crews should be on-site around 8:30-9AM. If you haven’t attended one of our launches before, this is a great opportunity to come along and see what’s involved first-hand!

As usual, there’s always the chance the weather for the planned launch date may not be suitable, so a backup launch date of Sunday the 18th of November has been tentatively penciled in (the 11th being the AHARS buy & sell weekend).

Cross-band FM Repeater

Likely suspects operating the cross-band repeater on Horus 23

The cross-band repeater will be using the following frequencies:

  • Uplink: 438.900 MHz, with a 123 Hz CTCSS tone required for activation.
  • Downlink: 147.500 MHz  (~1.4W output power).

To transmit to the balloon at the maximum range of 700km (once the balloon reaches >30km) you will need approximately 10-30W and an 10dBi gain antenna and a clear takeoff towards the balloon. Those stations closer to the launch site will be able to get away with much less.

PLEASE MAKE SURE YOU can hear the repeater before transmitting
and remember to make sure you SET YOUR CTCSS TO 123Hz
or you will not access the repeater.

As with previous flights, the repeater will be run as a controlled net. Listen for VK5ARG acting as net control and please follow their instructions so that as many people as possible can share the repeater.

FM-SSTV Imagery Payload

Instead of the usual Wenet imagery payload this launch will have a new SSTV transmitter operating on 145.100 MHz FM. It will run approximately 250mW transmit power. The transmitter will have 30 second gaps between image transmissions to avoid overheating the transmitter.

Scottie 2 SSTV Imagery Example

The payload will be transmitting images using the Scottie 2 SSTV mode throughout the flight, and can be decoded using any SSTV software capable of decoding this mode (pretty much all of them!). This is a mode that typically is used on HF but is equally adapted to VHF FM work. (Note it is not the same as the PD120 transmissions from ISS).

Examples of suitable software you can use to decode the SSTV pictures include:

Any FM receiver (including handhelds) should be capable of receiving this payload, though as with the cross-band repeater, a Yagi antenna may be necessary for reliable reception at the edges of the transmitter footprint.

If you do receive images, please post them to Social Media and on Twitter include the #horus50 hashtag so everyone can see them!

Telemetry Payloads

As always, we’ll be flying the usual assortment of telemetry payloads, including:

  • Our usual 100 baud 7N2 RTTY telemetry on 434.650 MHz USB. This can be decoded using dl-fldigi, with a reception guide available hereNOTE: There is a known issue with dl-fldigi where it does not upload any received telemetry until about 10 minutes after the software is started. Any telemetry received in this time period will be queued and uploaded after the startup period has completed (i.e. no telemetry will be lost).
  • 4FSK Telemetry decoder

    The new 4FSK Binary telemetry will be transmitting on 434.640 MHz USB. This uses a separate decoder, with setup instructions for this available here. (Previous listeners note that there have been updates to the software – please re-download the latest version!). We would love reports of how the 4FSK signal compares to standard RTTY!

  • If weight permits, there will be an APRS beacon operating on 145.175 MHz with the callsign VK5ARG-12. This will be received automatically by the APRS network.
Tracking of the flight will be available on the HabHub Tracker, available at this link. (Note that other balloon launches will also be visible on this page, including the Bureau of Meteorology launches from Adelaide Airport).
Follow the #horus50 hashtag on Twitter for updates from the launch and chase teams on the launch day.
Stay tuned for updates closer to the launch date…
73
Mark VK5QI

Horus 49 – Anstey in Space v2.0 – Success!

On Sunday the 8th July, the Tea Tree Gully Library’s echidna mascot, Anstey, rose into the sky to an altitude of 36,374 metres under a High-Altitude Balloon. This was Anstey’s second flight into the stratosphere, and Project Horus’s 49th balloon launch.

Originally planned for the 30th of June, Horus 49 had to be delayed a week due to very poor weather conditions. Even still, this flight was a a long one for the chase teams! Fortunately we had the assistance of a team from the Riverland Radio Club who mobilized from their home base (much closer to the LZ) and who then played a big part in tracking and retrieving Anstey at the end of his flight. You can read about their adventure on the RRC Blog.

Launch Activities

As usual, the launch was from the Mt Barker High School oval – thanks must go to the school for allow us to use their oval for so many launches! A good number of AREG club members came along to help out with the launch. Also present at the launch were members of Anstey’s Space Club, there to watch the launch and see Anstey off into the stratosphere!

Filling the balloon.

Payloads were laid out, turned on and tested, and the balloon was filled with somewhat more gas than usual. The flight path predictions had a possible risk of landing close to Loxton, so additional gas was used to give a higher ascent rate (as it turned out, a *very* high ascent rate). Wind gusts made filling the balloon a bit of a challenge, but there were no lack of hands to help keep things from getting out of control.

At just after 10AM, the wind died down and we had a perfect launch!

Launch of Horus 49

The Flight

On board Anstey had two cameras recording things. The first was a GoPro miniature video camera! The second was a still camera that was sending photos live to ground as the flight progressed.

Chase & Recovery

Right after the launch, Mark VK5QI and Will VK5AHV quickly headed off towards the expected landing area to the South-West of Loxton – a long drive away! Marcus VK5WTF and partner were also following not far behind.

The ascent rate ended up being much higher than intended – ascent rates as high as 9m/s were observed at some points in the flight, resulting in a shorter than expected flight. Even still, the Hwoyee 1600g balloon used made it to a very respectable 36374 metres altitude before bursting.

With the original flight path prediction due to land near Loxton, it was looking pretty unlikely that the chase teams departing from Mt Barker would make it there before landing. Luckily, a group of Riverland Radio Club members were on the case! Ivan VK5HS, Peter VK5PE, Danny VK5DW and Andy VK5LA also headed out to chase, starting from the Loxton area. Rob VK5TRM was also out for the chase. Ivan & co had been practicing by hunting the Bureau of Meteorology radiosondes, so were well experienced in chasing balloons – so much so that they were able to get into position to watch the balloon land in an area of scrubland near the locality of Mantung (40km SW of Loxton).

Mark and Will were not far behind, arriving at the landing site a few minutes later. A short walk later and Anstey was sighted… about 8 metres up a gum tree!

With some persuasion from a SpiderBeam pole, Anstey was recovered. Many thanks to all those who came along for the chase!

Horus 49 Recovery Team

Live Wenet Imagery

Throughout the flight Anstey was imaged via a version of Project Horus’s ‘Wenet’ imagery payload, which transmits images down to the ground via a 115kbps 70cm transmitter. As expected the images of Anstey were amazing, and were viewable live via HabHub’s SSDV webpage.

This live imagery is only possible through volunteers running ground-stations. Thanks go to VK5APR, VK5EU, and VK5KX who ran stationary receivers. Mark VK5QI was also running a mobile Wenet receiver in his chase car.

CallsignPackets ReceivedTotal Data Received (MB)
VK5KX23846058.22
VK5QI (Mobile)21801253.23
VK5APR21304552.01
VK5EU15317537.40

Telemetry – RTTY & Horus Binary

As with all previous Project Hours flights, a RTTY payload was flown. Many listeners contributed to tracking this payload:

CallsignPackets HeardPercentage of Flight HeardPayload Alt at First RX (metres)Payload Alt at Last RX (metres)
VK5EI103393.4%3962695
VK5EU101792.0%7012780
VK5FAAP98288.8%16373203
VK5FJGM73966.8%11229329
VK5FLJG62656.6%22117751
VK5KX95586.3%1680193
VK5NEX91282.5%26335108
VK5ST83375.3%28783897
VK5ZAR79371.7%12055551

New to this flight was an experimental ‘Horus Binary’ payload, which was transmitting a MFSK telemetry mode developed by David Rowe VK5DGR and Mark Jessop VK5QI. This new mode has significant performance advantages over RTTY, and will hopefully become the new default telemetry system for Project Horus flights. David VK5DGR also has an overview of the payload and how it performed on the flight on his blog. Many stations were able to run the new decoding software and track the flight using this mode:

CallsignPackets HeardPercentage of Flight HeardPayload Alt at First RX (metres)Payload Alt at Last RX (metres)
VK5AKH/KX/ZM (Portable)151182.4%6970101
VK5APR154184.0%26314850
VK5FJGM123467.3%76925875
VK5FLJG157786.0%6755217
VK5FTAZ83245.4%91466484
VK5IX149181.3%818661
VK5KJP147180.2%27484404
VK5RR28815.7%33826400
VK5ST166390.7%24351286
VK5TRM171993.7%1854139
VK5QI (Mobile)156085.1%34364
VK5WTF (Mobile)103956.7%2776139

The new mode provides position updates twice as fast as the 100 baud RTTY payload, and with 6dB better decoding performance (meaning double the range!). The update rate may have been too fast it seems – while about 2600 packets were transmitted during the flight (confirmed as received on VK5QI’s mobile station), only ~1800 of these made it into the Habitat tracking database! This is likely a result of upload timeouts – some changes will be made to the software prior to the next Horus Binary flight so this issue can be further debugged. Still, the new mode performed incredibly well in the chase cars, providing  rapid and regular updates to the chase car mapping systems.

Thanks again to all who helped track the flight using both Wenet, RTTY, and the new modem. Expect the Horus Binary mode to make appearances on more flights in the future!

Upcoming Launches

To give more listeners an opportunity to decode the new Horus Binary mode (and to use up some leftover gas from Horus 49!), a small balloon launch will take place sometime in Late July. This will be a ‘small’ balloon launch (as per the CASR Part 101.E definition), flying a re-purposed RS41 radiosonde clocking in at just over 40 grams. A new version of the Horus Binary decoder will be released prior to this launch to allow better analysis of the upload issue encountered on Horus 49.

Also coming up is the 20th anniversary of AREG – as part of the celebrations, we will be performing Project Horus’s 50th launch! On this flight we expect to fly:

  • A 2m/70cm Cross-Band repeater, similar to what was flown at the WIA AGM launch.
  • A SSTV transmitter, sending images in the PD120 SSTV mode.
  • An APRS beacon (depending on weight budget)

.. along with the usual telemetry and cutdown payloads. Stay tuned!

High Altitude Ballooning: Horus 48 – Flight Report

At 10:08AM CDST, on the 11th of March 2018, Horus 48 was launched from Mt Barker.

This planning for this flight started out as an excuse to use up some helium leftover from the previous two launches, and quickly evolved into a mechanism for testing out some new payloads and launch concepts – the main one being the use of the ‘THOR16‘ data mode, which is considerably more robust to interference than RTTY, at the cost of being about 50% slower.

Horus 48 Payloads

Horus 48 Payloads

As we only had a limited amount of leftover helium available (~1.6m^3), the mass of the payloads had to be kept to an absolute minimum. New foam payload boxes were built with this in mind, with the new THOR16 and RTTY payloads weighing in around 70g each. (Thanks to Peter VK5KX for supplying the antenna wire!)

The week prior to the launch, a ‘test and tune day’ was conducted. An example THOR16 signal was broadcast from Mt Lofty summit, with many stations tuning in and decoding telemetry. The responses from this test were promising, with one station reporting he had much more success with THOR with it’s forward-error-correction, as local LIPD noise would disrupt RTTY decoding resulting in invalid telemetry.

Thanks to the following stations who participated – it was great to see so much interest!

VK5FJGM VK5ZAR VK5KJP VK5KIK VK5FTAZ VK5APR VK5NIG VK5NG VK5KX VK5AKK & VK5OI

Launch Preparation

The launch was quite light-on with helpers – Mark VK5QI and Will VK5AHV performed the launch activities, with help from David VK5DGR, Drew VK5XFG, Rod VK5ZOT and a few others.

The original intention to use a small 100g balloon went out the window the night before the launch, when it was discovered the specified burst diameter for the 100g balloon was not quite as expected – this would have resulted in a ~3km burst altitude! Instead an old 1000g Hwoyee balloon was used. The larger balloon meant all the gas in the cylinder had to be used up, and even this only resulted in an ascent rate of 2.5m/s (we usually aim for 5m/s).

To counter the low ascent rate, which would have resulted in a 4 hour long flight, and a landing well to the east of Bowhill, one of the Horus cutdown payloads was flown, allowing termination of the flight via a command from the ground. This cutdown payload used a newly developed cutdown device (to be kept under wraps for now!), which is intended to replace the nichrome wire string-cutter device previously used – Experiment #2 for this flight!

All up, the payloads combined only weighed ~300g. The smallest parachute we have in stock was used (a 2ft ‘Rocketman’), and was hung off the side of the balloon train instead of in-line with the payloads as we would usually do. This was to try and reduce the tangling of the parachute with the payload string that had been encountered on the last few flights – Experiment #3!

Launch & Chase

 

Launch was pretty much textbook – some light winds encountered during filling died down for an easy release into the skies. Will and Mark immediately headed off towards the target landing area, while David VK5DGR and co headed off to Mannum for a bakery stop.

At about 10km altitude the cutdown signal was sent to the payload, with the intent of landing the payload to the south-east of Mannum. The new cutdown device worked first-go – a success for Experiment #2! The payloads then quickly descended to a landing on a property just across the river from Port Mannum.

Will and Mark caught sight of the payloads at about 800m altitude, and were able to watch the payloads descending behind a hill, into an empty field. The parachute was clearly doing its job, and was not tangled up or ensnared in the other payloads – another successful experiment!

A quick discussion with the landowners (and their friendly dogs) and permission to enter the field and retrieve the payloads was granted. A short walk and the payloads were in hand!

Flight Statistics

Everything is more interesting with data – so here is the flight’s vital statistics.

MetricResult
Flight Designation:Horus 48 - THOR16 Test Flight
Launch Date:2018-03-10 23:38 UTC
Landing Date:2018-03-11 01:16 UTC
Flight Duration:1 Hour 37 Minutes
Launch Site:-35.07568, 138.85701
Landing Site:-34.93807, 139.31944
Distance Traveled:44 km
Maximum Altitude:10,187 m
Horus 48 Flight Path

Horus 48 Flight Path

New Telemetry System Performance

Even with a 10.2km maximum altitude, many receiver stations around the state were able to decode both the THOR16 and RTTY telemetry:

RTTY Telemetry Scoreboard
CallsignPackets HeardPercentage of Flight HeardPayload Alt at First RX (metres)Payload Alt at Last RX (metres)
VK5APR60.7%13921465
VK5DSP687.9%52556203
VK5EU78190.8%7571454
VK5FJGM/M18521.5%56048306
VK5HS44651.9%38783414
VK5KFB30335.2%58285649
VK5KIK586.7%27413749
VK5KJP64875.3%12443210
VK5KX-0177289.8%771163
VK5NG111.3%46724804
VK5OI15417.9%22656506
VK5QI-971282.8%35722
VK5TRM70.8%24981782
VK5ZAR26330.6%73035162
VK5ZM49057.0%2339163
VK5ST62372.4%31711260
VK5ZAI69480.7%18161843
THOR Telemetry Scoreboard
CallsignPackets HeardPercentage of Flight HeardPayload Alt at First RX (metres)Payload Alt at Last RX (metres)
VK5AKK27093.1%621903
VK5APR22979.0%9682688
VK5DSP16055.2%22283591
VK5EI27594.8%6211602
VK5FAAP22979.0%18251840
VK5FJGM/M12944.5%36301602
VK5HS10435.9%56432688
VK5KIK12743.8%8081132
VK5KX-0225889.0%1331307
VK5NEX23681.4%12172445
VK5NG17861.4%4853903
VK5NIG5619.3%14209863
VK5OI19165.9%7442325
VK5QI-913947.9%36231
VK5RR11840.7%60184988
VK5ST19968.6%33121840
VK5TRM3712.8%91187969
VK5ZAR15252.4%8612206
VK5ZEA13747.2%51186667

The callsign pie chart shows the combined result of both RTTY and THOR telemetry streams – great to see so many contributors this time!

So, was the THOR16 telemetry useful? It’s hard to tell with just one launch. From the chase-car, the following observations were noted:

  • The slow speed of THOR16 (one update every ~20 seconds) makes tracking the flight through critical stages like burst and descent difficult. The chase team ended up switching to the cutdown payload telemetry (updates every 5 seconds) to get more frequent position updates.
  • THOR16 was quite robust to mobile fading, however,
  • … fldigi has no automatic frequency correction for THOR16. While the payload’s transmitter didn’t drift very far, it did drift far enough for the performance of the demodulator to drop, resulting in quite a few lost packets until the issue was noticed.

Since the THOR16 payload is so light (only 65 grams) you can expect to see it on more upcoming flights – please continue to send in reports on how it compares to the RTTY payload!

Thanks again to all listeners who decoded data from the flight, including those who went portable to track the payload down to the ground (VK5KX, VK5ZM & VK5GR).

RTTY as received at VK5KX

THOR16 as received at VK5KX

Addendum: HabHub Tracker Issues

Some listeners noted issues with the Tracker where the payload list on the left side of the webpage did not populate. This is a known bug and is currently being worked on. The bug is related to window sizes, so if you re-size your browser window slightly it should re-draw the web-page, and the payload list should appear.

HORUS 48 Balloon Flight: Sunday 10.00am ACDT

As per the previous announcements on the AREG website, there will be a (small) balloon launch occurring this weekend. The current predictions for Sunday have the payloads landing to the south-east of Mannum (hopefully not in the river!).

Currently the prediction for Sunday looks the best in terms of recovery/distance/bakery factor, and also leaves Saturday free for some last-minute preparations! As usual, we’ll aim to launch around 10AM CDST, with the launch being conducted from the Mt Barker High School Oval.

This will be a fairly low-key launch, with a tiny balloon and tiny payloads, but visitors are still welcome! We’ll be on-site from around 9-9:30AM, and should have an ear out on VK5RSB 70cm.

The current prediction (noting this will probably change between now and Sunday!!) has us landing near Palmer just after 11AM – a very short flight! We’re using a 100g Totex balloon, so the expected burst altitude is only 11-12km.

UPDATE: We will now be using a 1000g Hwoyee balloon, but with a minimal amount of helium. Depending on what ascent rate we achieve, we may terminate the flight early for a landing near Mannum, or let it ascend to a potential height of 35km. Either way, the landing area is in the Mannum area.

Telemetry Information

The telemetry frequencies for the flight are as follows:

  • RTTY – ‘HORUS’ – 434.650 MHz  (100 baud, 425 Hz Shift, 7N2)
  • THOR16 – ‘THORUS’ – 434.640 MHz

Both payloads are running 10mW transmit power, and have essentially identical antennas.

DL-FLDIgi Setup for THOR16

As usual, use dl-fldigi to decode telemetry, but in the case of the THOR16 payload, you will have to manually select the operating mode from the drop-down list as follows:

The auto-configure capability for the RTTY payload (‘HORUS’) will work as usual, however you will have to manually select ‘HORUS’ from the payload drop-down list. Auto-configure will not work for the THOR16 payload.

If you have the capability of running two 70cm receivers, please consider running two instances of dl-fldigi to decode both payloads. This may require either multiple PCs, or multiple sound cards. If you can only run a single receiver, please try and alternate between the different telemetry payloads.

We would very much appreciate reports as to your experiences decoding the different telemetry payloads – please e-mail these through to vk5qi@rfhead.net

Tracking for the launch will be available on the HabHub online tracker. We hope to see you as part of the tracking nets!

Images and comments from the chase will be sent via Twitter, using the #horus48 hashtag.

73 de Mark VK5QI

Horus 47: SHSSP 2018 Science Flight Report

Following unfavourable weather conditions the previous weekend, the Amateur Radio Experimenters Group planned a second attempt to fly the science payloads for the Southern Hemisphere Space Studies Program 2018 on Sunday February 4th. Again, the weather was not cooperating, which forced a change of the launch site in order to get off the ground. This meant a very early start as the launch teams left Adelaide at 7.00am to trek 150km east of the city into the Murray Mallee.

This flight was carrying a number of science experiments for the SHSSP students. This year the focus was on space navigation, so one particular focus was using the GPS data coupled with an initertial measurment unit to be able to plot the angle and direction of the camera taking the photos. The other experiment was a spectrometer which was measuring the precise wavelengths of light.

SHSSP18 Downward facing camera (courtesy UniSA and SHSSP)

Launch Preparation

Launch preparations began about 9am after the crew had arrived at the launch site. Thanks must go to Chris VK5CP who arranged access with the farmer who’s paddock we borrowed for the morning. Along the way the obligotory bakery stop had been made in the township of Mannum (I can vouch for their blueberry scrolls). Today we had a couple of new faces on the flight team, with Marcus VK5WTF and Mark VK5QN stepping in to give us a hand. Also on site was Mark VK5QI (Payload), Grant VK5GR (Balloon) and Will VK5AHV (Balloon). The team laid everything out and commenced assembling both the balloon train and the filling apparatus.

At the same time, Grant VK5GR started up his frist time chase vehicle and coaxed all of the linked software systems to life. Thanks to some loaned antennas from Matthew VK5ZM and LoRa receivers from Mark VK5QI, Grant was able to establish a full telemetry and tracking suite in just a matter of days to help assist with the chase.

Marcus filmed the proceedings too and you can see a short timelapse here of inflating the balloon.

Meanwhile, Mark VK5QN and Mark VK5QI (yes that did get confusing) assembled the balloon train. Mark VK5QN with his climbing and scouting background did a professional job of tying the balloon train together. You are most welcome to come again Mark!

Lift-Off

Finally the time came for liftoff. Mark VK5QI checked in with ATC Melbourne and we were given our clearance to fly. The team raised the balloon train and was thankful that we had almost zero ground winds. Mark did a final check that all the payloads were transmitting using a new handheld flight status monitor he had been working on and gave the the green light to commence countdown.

Grant VK5GR then released the balloon and we witnessed a near text book launch. As it climbed, the balloon hit it’s ascent target speed of 5m/s and everything looked good for a successful flight. The ground teams then scrambled to pack everything away and get rolling. It was going to be a long chase, with the landing zone predicted to be up in the north eastern Barossa Valley, and a detour around the River Murray required past Bow Hill and up to Blanchtown so that delays on the river car ferrys could be avoided.

Tracking Control

Meanwhile 58km to the north west, the ground tracking crew of Peter VK5KX and Darin VK5IX were awaiting signal aquisition as the balloon cleared the horizon. They had lots of signals to track this flight, including the 100 Baud RTTY, the LoRa Telecommand system and two Wenet Imaging payloads. Peter again setup his automated tracking antenna (seen on the previous week’s flight) and with Darins help was able to collect and upload to the internet the image signals from both payloads.

Peter took the following video of the Wenet systems in action

The Chase

Meanwhile, back in the two chase cars, Marcus VK5WTF, Mark VK5QI and Will VK5AHV headed out first and made the dash up to the valley.

Mark VK5QN and Grant VK5GR had a slightly slower start, as they had to first drop the gas trailer at a staging point in Younghusband before they too could join the chase.

Wenet Images

This was the first time the balloon and been flown this far NE of Adelaide so it was great to see some different angles of the state. The weather was nearly perfect as well with hardly a cloud in the sky. These photos were taken by the AREG Wenet payload with an outward facing camera.

This slideshow requires JavaScript.

One of the last photos actually captured a shot of Mark VK5QI’s chase car as the team was fortunate to be in visual range of the landing.

Grant’s team wasnt quite so lucky due to a software issue involving timezones and the prediction tools and he didnt make it to the landing zone until about 5 minutes after it landed.

Once the balloon landed, both teams met up with the local land owner before being given permission to drive in and pick up the payloads. We were very lucky that the balloon landed approximately 100m from the access track in an empty stubble field. Definitely one of the easier recoveries of recent times!

After we bid farewell to the land owner it was off back home – of course via another bakery (this time in the main street of Truro). Mark’s chase team had the luxury of being able to head straight back to Adelaide. Meanwhile Grant had to return to Younghusband to pick up the gas bottles and trailer. For the VK5GR team it was nearly a 600km 10.5hr round trip this time.

Flight Path & Statistics

Horus 47 flew an interesting course this time. This is a rather uncommon flight track for the AREG team.

The flight statistics are below

MetricResult
Flight Designation:Horus 47 - SHSSP18 #2
Launch Date:04/2/2018 23:59:04 UTC
Landing Date:04/2/2018 02:19:52 UTC
Flight Duration:2 Hours 30 Minutes
Launch Site:-34.878614 139.492314
Landing Site:-34.313174 139.107985
Distance Traveled:72.7 km
Maximum Altitude:32,507 m

Again many amateurs from across the state got involved in telemetry collection. We wish to thank everyone who took part as you all help make the chase and recovery more successful.

The following is the chart of who contributed to the telemetry gathering effort:

Thanks goes to the following who contributed: VK5QI, VK5KJP, VK5ST, VK5NEX, VK5EU, VK5APR, VK5KX, VK5GR, VK5FTAZ, VK5ZAI, VK5DJ, VK5FAAP, VK5ZEA, VK5ALX, VK5KIK

A few stations also contributed to receiving the Wenet digital imaging downlinks. These stations were:

SHSSP1 Payload

  • VK5APR: 145509 packets (35.52 MB)
  • VK5WTF: 91884 packets (22.43 MB)
  • VK5EU: 146129 packets (35.68 MB)
  • VK5DSP (UniSA Team): 133871 packets (32.68 MB)
  • VK5KX: 99419 packets (24.27 MB)

VK5ARG Payload

  • VK5QI: 198691 packets (48.51 MB)
  • VK5KX: 185197 packets (45.21 MB)

Conclusion

So that marks the end of the story for the Southern Hemisphere Space Studies balloon launch program for 2018. We hope everyone had a great time and again thank everyone who contributed or participated in making the flights possible!

73 till next time de VK5ARG

Acknowledgements: Thanks to VK5QI, VK5QN, VK5GR, VK5WTF, VK5KX, VK5IX, VK5AHV and SHSSP for all the material in this report.

Horus 47: Set to Fly on Sunday 4th Feb for SHSSP!

After the successful Southern Hemisphere Space Studies Program publicity flight last week, we are now planning to fly the Science flight this coming Sunday. This flight has two main experiments on it, the first being a Spectrometer which will collect atmospheric composition data for the university and the second is a downward facing camera with a 9DOF inertial measurement unit which is going to be used to create stitched together images from the flight area.

The flight will lift off at 10:00am ACDT on the 4th of February from Younghusband in the Murray Mallee ~150km east of Adelaide.

UPDATE 2018-02-05: This launch has been performed and was recovered successfully – a full writeup is incoming… 

Payload Telemetry Details

As always amateur radio operators from across central and SE Australia are encouraged to get involved with telemetry reception and forwarding to the central habhub.org database.

There are two camera payloads as well as the RTTY and telecommand systems planned for this flight.

  • Primary:      434.650MHz RTTY 100 baud 8N1
  • SHSSP-1:   441.2MHz FSK 115k2 baud Wenet (downward facing camera)
  • VK5ARG:    443.5MHz FSK 115k2 baud Wenet (outward facing camera)

Information on how to receive, decode and relay the information is available as follows:

RTTY Payload

The auto-configure feature within dl-fldigi will automatically configure these settings for you once you pick the correct flight (“Horus 47 / SHSSP 2018 MkII”). The UKHAS tracking guide provides the information you need to set up a RTTY receiver:   https://ukhas.org.uk/guides:tracking_guide

WENET Picture Payloads

Information on setting up to receive the Wenet imaging payload is available here: https://github.com/projecthorus/wenet/wiki/Wenet-RX-Instructions-(Ubuntu-Debian)

Note that this is a few orders of magnitude more complicated than setting up for RTTY, and requires a machine running a recent version of Ubuntu, some Linux experience, and a RTLSDR+Preamp. You also need to be within 100-150km of the balloon to receive sufficient signal.  If you have a WENET capable ground station please concentrate on the 441.2MHz downlink to maximise the data we collect for the university.

Tracking and Viewing Information

If you want to follow the progress of the flights, you can visit www.habhub.org and access the live tracking information as events unfold. You can also access the live SSDV images  from ssdv.habhub.org/VK5ARG

The predicted flight path at this time is:

Keep watching the AREG Website for details as things can always change the closer we get to lift off.

High Altitude Ballooning: Willunga HS Supported by Project Horus

The Willunga High School is planning to launch a high altitude balloon, planned for this Thursday, the 7th of December. Launch time will be around 10:30 AM ACST. This flight is being carried out by the teachers at Willunga High School.

While not a direct Project Horus Flight, it is being supported by the Project Horus team with tracking payloads, recovery services and telemetry feeds. Amateur Radio operators from across the state are invited to contribute to the telemetry collection activities which will use the same Internet resources as Project Horus does.

Flight Predictions

The predictions are a bit variable – there is a weather change coming through Thursday & Friday which are throwing things out. As of Sunday 3rd December’s model the balloon is landing somewhere near Ki-Ki, but this is expected to change. If the predictions change markedly, the launch may be rescheduled to Friday.

Target burst altitude is 30km, but depending on predictions the flight may be cut-down early to ensure a safe recovery.

The radio payloads on this launch are currently planned to be:

  • RTTY Telemetry – 434.650 MHz
  • Cutdown / Mission Control payload – 431.650 MHz
  • Wenet Imagery on 441.200 MHz

As usual, assistance with tracking is greatly appreciated.
Information on tracking the RTTY payload is available here: https://ukhas.org.uk/guides:tracking_guide

Live tracking of the flight will be available on the HabHub Tracker: https://tracker.habhub.org/#!mc=-34.8,139.0&mz=9

Finally, if we can get enough packets down from the Wenet payload, live imagery will appear here: http://ssdv.habhub.org/VK5ARG

More news as we get closer to the day!