Horus 46 High Altitude Balloon Launch Sunday 27th

 The Amateur Radio Experimenters Group has been again asked to support the Southern Hemisphere Space Studies Program for the International Space University in 2018. Held in conjunction with the University of South Australia in Adelaide, this year AREG is launching one balloon for the group carrying a variety of sensors and cameras. The students this year are focusing on space navigation and will be attempting to take the GPS and 9DOF orientation sensor data from the payload to pinpoint where in space the photos were taken from, and then overlay them like a checkerboard over the ground.

The flight will lift off at 10:00am ACDT on the 28th of January from Serefino Winery east of McLaren Vale.

Tracking of the flight will be available on the HabHub Tracker, available at this link. (Note that other balloon launches will also be visible on this page, including the Bureau of Meteorology launches from Adelaide Airport).

Live Imagery from the launch will be available at this link: http://ssdv.habhub.org/VK5ARG

Payload Telemetry Details

UPDATE: Due to the weather, there is now only one camera payload (as well as the RTTY and tele-command systems) planned for this flight, with a much lower planned burst altitude (~17km instead of 30km). This is because of the flight path and recovery concerns in the face of Severe fire-ban and harsh weather forecasts.

  • Primary Telemetry:   434.650MHz +/- 5 KHz RTTY 100 baud 8N1
  • Imagery Payload:   441.2MHz FSK 115k2 baud Wenet

As always we can use the help with receive stations copying the telemetry and pushing this to the internet for us. If you have a Wenet capable ground station please concentrate on the 441.2MHz downlink to maximise the data we collect for the university.

The auto-configure feature within dl-fldigi will automatically configure these settings for you once you pick the correct flight (‘Horus / SHSSP 2018’). The UKHAS tracking guide provides the information you need to set up a RTTY receiver:  https://ukhas.org.uk/guides:tracking_guide

Note that the RTTY payload on this launch is one of our ‘vintage’ MicroNut payloads, and is expected to drift a few kHz during the flight. dl-fldigi will keep track of the signal if it’s within your receiver’s passband, but you may need to re-tune during the flight.

Information on setting up to receive the Wenet imaging payload is available here: https://github.com/projecthorus/wenet/wiki/Wenet-RX-Instructions-(Ubuntu-Debian)

Note that this is a few orders of magnitude more complicated than setting up for RTTY, and requires a machine running a recent version of Ubuntu, some Linux experience, and a RTLSDR+Preamp. You also need to be within 100-150km of the balloon to receive sufficient signal.

The Flight Path

This flight is not ideal as it is landing in the Adelaide Hills, an area that can make recovery difficult for multiple reasons. The planning group are watching this very closely.

A note on the Weather

With the weather in the high forties this coming weekend if the CFS issue a Severe or higher fire ban on Saturday at 4pm then the flight will be scaled back or cancelled. It is possible a light weight disposable flight may still run (without the expensive scientific payloads) so we will still be looking for tracking. It all depends on the flight path and the fire ban status issued by the CFS. A final call will be made Sunday morning and will be posted to the AREG Website before launch.

 

Willunga High School Launch – Success!

This slideshow requires JavaScript.

On the 7th of December 2017, members of Project Horus participated in the successful launch of the Willunga High School’s 2017 balloon launch. This year Willunga High School was participating in a ‘Balloons Without Borders’ exchange program with the United States ‘Near Space Systems’ – Near-Space Systems would launch Willunga High School’s payload, and the US payload would be launched here in Australia. The US payload contained cameras and various atmospheric sensors.

NearSys BalloonSat Payload

The chase team consisted of Mark Jessop VK5QI, and Matthew Scutter, the developer of SkySight.io, a weather prediction service that Project Horus has made use of many times for launch-day weather predictions. This was Matthew’s first balloon chase, and as is custom, he got thrown straight into the deep end acting as navigator and operator of the chase car software.
Mark describes the launch day as follows:
We launched right ahead of a cold front that was moving in, which threatened to make the flight challenging. During my drive to the launch site I encountered large areas of showers, however the Willunga area stayed clear for quite a while. 
The winds did start to pick up during launch preparations, but were not strong enough to make the launch difficult. We ended up with a total payload mass (combined across the 2x telemetry payloads, 1x Wenet imagery payload, and the BalloonSat) of approximately 1300g.
The flight proceeded pretty much as planned, with an average ascent rate of 5.2m/s. The payload’s ground speed was observed to reach 200kph at some points during the flight. The balloon was cut away at just under the predicted burst altitude of 30km, in an attempt to bring the landing site closer towards the Dukes Highway, a major highway running through the region. The maximum altitude was 29949m. 
The descent rate was faster than expected, around 10m/s on landing. This turned out to be due to one of the payloads tangling with the parachute, causing it to not open completely. This brought the landing location a bit further away from the highway, and made the descent portion of the flight too fast for the our lonesome chase team to get to the landing site in time to watch the landing. 
We arrived about 20 minutes after landing to find the payload in a large, recently cropped field, about 200m from a road. Shortly after we departed, the cold front arrived and the rain started – we had recovered just in time!
All the payloads were recovered in good condition, in spite of the faster-than-expected landing. Constructing the payloads from lightweight expanded polystyrene does have its advantages!
The live Wenet imagery didn’t perform too well, mainly due to lack of receivers. I had a receiver running in my chase car, and Graham VK5EU did a great job of receiving from home.
Thanks also go to VK5HS, VK5APR, and VK5NEX for decoding the RTTY telemetry throughout the flight!
 The flight profile and chase vehicle tracks can be seen here.
The flight statistics are:
MetricResult
Flight Designation:WHS-December 17
Launch Date:07/12/2017 00:11:45 UTC
Landing Date:07/12/2017 02:08:09 UTC (Approx)
Flight Duration:1 Hour 57 Minutes
Launch Site:-35.262946 138.555586
Landing Site:-35.755356 139.736493
Distance Traveled:124.8 km
Maximum Altitude:29,904 m
Thanks to everyone involved in yet another high altitude balloon flight!

Horus 44: Flight Report – Riverland BRL Field Day

On April 22nd 2017, the Amateur Radio Experimenters Group conducted an Amateur Radio focused balloon launch from the Riverland Radio Club’s VK5BRL Weekend event at Overland Corner Hotel in the Riverland. This launch was carried out to bring some interesting amateur radio based experiments to a new audience, and also to encourage more tracking stations to take part in Project Horus from the Riverland region (which is often a landing ground for the flights from the Adelaide Hills).

Ground Control

The launch campaign began at 9.00am with Bob VK5FO and Ray VK5RR helping Ivan VK5HS set up the balloon ground control station at the BRL Weekend event.

Horus 44 was the first flight of a new 2m/70cm voice repeater so we also were making contacts through the balloon using the VK5WOW special event callsign throughout the flight, promoting the Wireless Institute of Australia’s AGM which was being held in VK5 a few weeks later.

Launch Crew

Meanwhile the ground crew started preparations to launch the payloads. AREG members Matt VK5ZM, Mark VK5QI, Grant VK5GR, Darin VK5IX and Kim VK5FJ worked on assembling the payload train and filling the balloon with helium.

The predicted flight track was to take us east, to land tot he north west of Renmark. We certainly hoped is would follow that track, as there were many inaccessible obstacles in the Murray River marshlands area.

Lift Off

We were going to find out soon enough! Lift off was a text book effort, and straight away people were accessing the repeater, able to make contacts with VK5WOW. The only issue noticed early on was that the repeater’s receive filters were very narrow, enough to cause the mute to shut if you spoke to loudly. Even with that issue, contacts streamed through think and fast.

Once in the air, the repeater ran hot. The following stations made contact with VK5WOW via the balloon:

[table “” not found /]

The repeater footprint continued to expand, and just reached Melbourne before the balloon burst.

WENET brings Superb Pictures

In addition to the voice repeater, the WENET camera payload also flew collecting stunning images of the Riverland region from the air.

This slideshow requires JavaScript.

Chase & Recovery

Meanwhile the chase teams had driven to Renmark and were watching intently as the balloon progressed along its path.  The two AREG teams were joined this time by Peter VK5PE and a crew from the Riverland Radio Club. The local knowledge they brought to the chase was invaluable!

At one stage we became quite nervous as it appeared it may actually land in the marshes. However, the winds once again became favorable and the landing zone looked very good indeed.

Recovery occurred after a short hike into a local conservation park, but not before we watched the balloon descend gracefully from about 1500m elevation!

Flight Statistics

The fight track for Horus 44 shows that there were fairly light high altitude winds on this day. Once clearing the ground winds the flight profile was remarkably vertical.

The detailed flight statistics are:

MetricResult
Flight Designation:Horus 44 - BRL Weekend
Launch Date:22/4/2017 01:36:17 UTC
Landing Date:22/4/2017 04:25:41 UTC
Flight Duration:2 Hours 49 Minutes
Launch Site:-34.153467 140.339623
Landing Site:-34.107695 140.651783
Distance Traveled:29.1 km
Maximum Altitude:29,953 m

This time we saw major contributions from many of our ground stations too. The following pi-chart shows who collected telemetry for this flight.

Conclusion

It was a very successful flight! A huge thank you again to everyone who was involved, and in particular to the Riverland Radio Club for the invitation to come and fly from their back yard. Thanks also to the AREG members who traveled and stayed in the Riverland to fly Horus 44, with a special thanks to Sharon VK5FSAW who once again helped with logistics through catering the lunches for those chasing the balloon!

Horus 45 Balloon Flight for WIA Convention 2017 – Preparation Underway!

The Amateur Radio Experimenters Group is please to announce that it will be supporting the WIA AGM & Convention weekend with a balloon launch. This launch will take place from Hahndorf Oval, as part of the “Come and Try Radio” activities day to be held on Sunday 21st May.

This event is aimed at promoting the many different facets of Amateur Radio and giving people the opportunity to learn about how to get involved. AREG will be manning two complete tracking stations at the event, one a fixed ground station and the other will be one of the chase cars decked out in the equipment we use to chase balloons in.

The main aim is to get more people interested in tracking the balloons!

 

 

Flight Payloads

The payloads are still being finalized, as the jet-stream has returned and there are concerns that the flight could be carried downrange much further than planned.

Balloon Repeater Frequencies

The balloon repeater will be heard on:

  • INPUT: 145.775MHz with 91.5Hz CTCSS (+/- thermal drift of the receiver)
  • OUTPUT: 438.850MHz (+/- thermal drift of the transmitter) – 0.8W into 1/4wave omni

NOTE 1: The VHF frequency has changed this flight to avoid harmonic issues with the Wenet imaging payloads

NOTE 2: The repeater is built out of a received designed to receive Narrow FM (12.5kHz bandwidth) not the usual 25kHz wideband FM that amateurs use. Please keep your deviation down so that you can pass through the repeater without it closing it’s mute.

To transmit to the balloon at the maximum range of 800km (once the balloon reaches 100,000ft ++) you should only need approximately 10-20W and an 2-4dB gain antenna.

Receiving the balloon at 400km range in a handheld environment should be achievable, but to hear the repeater at the maximum range of 800km you should expect to need a 10dB gain Yagi for a 0.4uV capable receiver and 2dB feeder loss

This setup is much the same as the LEO satellites but without the high speed Doppler shift.

PLEASE MAKE SURE YOU CAN HEAR IT BEFORE YOU TRANSMIT!

Other Balloon Payloads

Other payloads being flown on this flight will include:

  1. our standard 100bps 7N1 RTTY telemetry transmitter on 434.650MHz, and
  2. the Wenet imaging payload which will downlink on 441.2MHz at 115Kbit/s, and which will stream HD photos during the flight.

Images can be seen (here).

Tracking will again be available via www.habhub.org

Flight Time and Launch Location

If you would like to learn more about how to get involved in tracking the balloon, take a look at the following resources on the club website, or come on down to the launch on Hahndorf Oval. Preparations will begin around 1.00pm, with liftoff planned for 2.00pm. (See the location marked “Amateur Radio Come and Try Day”.

 

WIA AGM & Convention Special Event Callsign to be Net Control on the balloon repeater

The WIA AGM & Convention special event call sign VK5WOW and VI5WOW will be heard via the balloon repeater during the event. Contacts with VI5WOW and VK5WOW through the balloon will qualify for the award certificate.

Full details of the Convention 2017 award are available via  www.wia.org.au/members/wiaawards/agm2017/

UPDATE: Overland Corner Balloon Launch – Sat 22nd ~11am

Predicted Balloon Flight Track as at 7am 20th April

Preparations continue for the High Altitude Balloon launch, scheduled for Saturday morning from Overland Corner in the Riverland district of South Australia. This flight is one of the events that is planned as part of the BRL Weekend for the Riverland Radio Club.

The flight track prediction has been quite unstable for a few days but now has settled down into a reasonably accessible area near Renmark. This launch is being conducted in conjunction with the Riverland Radio Club’s BRL Weekend event at the Overland Corner Hotel.

Amateurs from across SA, VIC and NSW are invited to take part in one of the many amateur Radio facets of this flight, from receiving and relaying the telemetry, making contacts through the new balloon repeater and monitoring either direct or via the Internet the Wenet HD imagery payload.

Balloon Repeater Frequencies

This is the first test flight of a new experimental cross band voice repeater that has been built with weight in mind to fly under our balloons.The balloon repeater should be heard on:

  • INPUT: 147.500MHz with 91.5Hz CTCSS (+/- thermal drift of the receiver)
  • OUTPUT: 438.850MHz (+/- thermal drift of the transmitter) – 0.8W into 1/4wave omni

Please note that this repeater is experimental, and may have performance issues during the flight.

To transmit to the balloon at the maximum range of 800km (once the balloon reaches 100,000ft ++) you should only need approximately 10-20W and an 2-4dB gain antenna.

Receiving the balloon at 400km range in a handheld environment should be achievable, but to hear the repeater at the maximum range of 800km you should expect to need a 10dB gain Yagi for a 0.4uV capable receiver and 2dB feeder loss

This setup is much the same as the LEO satellites but without the high speed Doppler shift.

PLEASE MAKE SURE YOU CAN HEAR IT BEFORE YOU TRANSMIT!

Additionally, the receiver used in the repeater (a Dorji DRA818) appears to have quite sharp receive filters, which results in the repeater dropping out if the input signal is over-deviated (>4.8 kHz dev). Please talk using a regular speaking voice when using the repeater to avoid issues.

Special Event Callsign via the Balloon

As part of the WIA AGM & Convention weekend promotion, we also hope to activate VK5WOW, the special event callsign for that event, via the Balloon Repeater!

Contacts with the special event callsign via the balloon will qualify towards the Convention Award. The flight payloads will be one of the topics presented at the convention by Mark VK5QI, so make a contact through the balloon and then come on down to Hahndorf between May 19-21st to hear about how Project Horus flys and how you too can get involved in this fascinating aspect of the hobby!

Other Balloon Payloads

Other payloads being flown on this flight will include:

  1. our standard 100bps 7N1 RTTY telemetry transmitter on 434.650MHz, and
  2. the Wenet imaging payload which will downlink on 441.2MHz at 115Kbit/s, and which will stream HD photos during the flight.

Images can be seen (here).

Tracking will again be available via www.habhub.org

If you would like to learn more about how to get involved in tracking the balloon, take a look at the following resources on the club website.

Caveats – The weather may beat us

There is a small wrinkle in the plans currently and that is the weather. There have been significant rainfalls across the region in the last few days which may have made many of the dirt roads we might need to use impassable. The team is monitoring the situation and will advise if we have to call it off due to access. It currently depends on where the landing zone ends up. Stay tuned, and understand we are trying to plan a way to ensure we do get into the air on Saturday!

“BRL Gathering” Balloon Repeater Launch – April 22nd – UPDATE

The Amateur Radio Experimenters Group is please to announce that it will be supporting an Amateur Radio focused balloon launch, to take place at the Riverland Radio Club’s VK5BRL Weekend event at Overland Corner Hotel in the Riverland.

This event is aimed at bringing together members of the Riverland Radio Club and amateurs from across SA & Victoria, in particular those who participate in the VK5BRL bi-weekly net on HF (heard on 7115kHz  at 8.30am Wednesday and Saturdays).

The morning festivities start off with an early breakfast of coffee, tea and of course bacon,  eggs and sausages.  This is then followed by the BRL net.   The AREG are looking to launch the balloon some time around 11am (to be confirmed) when the NOTAM is raised later this week.

AREG & Project Horus Involvement

The AREG will be marking this weekend with a special balloon flight. It has been some time since the flying repeater was heard on air, so it was felt that it was time to put some more amateur radio back into the balloon flights.

Balloon Repeater Frequencies

The balloon repeater will be heard on:

  • INPUT: 147.500MHz with 91.5Hz CTCSS (+/- thermal drift of the receiver)
  • OUTPUT: 438.850MHz (+/- thermal drift of the transmitter) – 0.8W into 1/4wave omni

Please note that this repeater is experimental, and may have performance issues during the flight.

To transmit to the balloon at the maximum range of 800km (once the balloon reaches 100,000ft ++) you should only need approximately 5-10W and an 2-4dB gain antenna.

Receiving the balloon at 400km range in a handheld environment should be achievable, but to hear the repeater at the maximum range of 800km you should expect to need a 10dB gain Yagi for a 0.4uV capable receiver and 2dB feeder loss

This setup is much the same as the LEO satellites but without the high speed Doppler shift.

PLEASE MAKE SURE YOU CAN HEAR IT BEFORE YOU TRANSMIT!

Additionally, the receiver used in the repeater (a Dorji DRA818) appears to have quite sharp receive filters, which results in the repeater dropping out if the input signal is over-deviated (>4.8 kHz dev). Please talk using a regular speaking voice when using the repeater to avoid issues.

As we will be flying from Overland Corner instead of near Adelaide, coverage at apogee should almost reach Canberra. Contacts from Melbourne to Adelaide through the balloon should definitely be possible.

Other Balloon Payloads

Other payloads being flown on this flight will include:

  1. our standard 100bps 7N1 RTTY telemetry transmitter on 434.650MHz, and
  2. the Wenet imaging payload which will downlink on 441.2MHz at 115Kbit/s, and which will stream HD photos during the flight.

Images can be seen (here).

Tracking will again be available via www.habhub.org

If you would like to learn more about how to get involved in tracking the balloon, take a look at the following resources on the club website.

WIA AGM & Convention Special Event Callsign to be Net Control on the balloon repeater

The Riverland Radio Club will be activating the WIA AGM & Convention special event call sign VK5WOW via the balloon repeater during the event. Contacts with VK5WOW through the balloon will qualify for the award certificate.

Full details of the Convention 2017 award are available via  www.wia.org.au/members/wiaawards/agm2017/

Stay tuned for further details as the flight is finalised. We will announce the final flight time later this week as well as the predicted balloon track.

 

Project Horus Flight #43 Report – Sunday March 5th 2017

AREG finally had the weather smile on us today with a near textbook launch for Horus 43. This flight, conducted for Rostrevor College through LaunchBox, had been previously delayed multiple times due to either ground conditions, upper atmosphere conditions or both, so it was great to see it finally in the air.

Ground Preparations

The ground crew saw some new faces get involved today which was great. Balloon filling and handling was undertaken by Mark VK5QI, Darin VK5IX, Gary VK5FGRY, Grant VK5GR, Will VK5AHV, Marcus VK5WTF and Kim VK5FJ. Filling and liftoff went without a hitch!

Payloads

The payloads flown on this flight included:

  • 100bps RTTY FSK Telemetry Beacon
  • LoRa Telecommand
  • Wenet Imaging
  • LaunchBox Student Experiments

The images collected from Wenet were again spectacular – we never get tired of looking through what the balloon can see during it’s flight.

On the Ground before Liftoff

Ascent

This slideshow requires JavaScript.

Landing

Note how close some of the shots of the River Murray are towards the end of this set!

This slideshow requires JavaScript.

Chase & Tracking Teams

Two primary chase teams set out this time to recover the balloon payloads. Mark VK5QI lead the first team with Gary VK5FGRY and Will VK5AHV, while Darin VK5IX and his son headed out in the second.

Marcus VK5WTF meanwhile carried out his first shakedown attempt at kitting his vehicle out as well. After launch, Marcus headed to Bear Rock lookout near Palmer to join Peter VK5KX who again provided our primary Wenet downlink station. Grant VK5GR also paid Peter a visit and got to see the ground tracking side of the operation for the first time! We were also visited by Tim VK5ZT who decided to pay us a visit – great to see you out and about Tim!

Recovery went well in the end, with the teams being there for landing. They captured photos of the balloon moments before touchdown. 

Tracking Network

The tracking network continues to grow as well. We saw some new ground stations participate in collecting the Wenet image telemetry for the first time this flight! Stations who contributed to the image collection this time included:

VK5FJ, VK5QI, VK5EU, VK5KX, VK5DF

Welcome aboard to our first timers!

On the RTTY tracking side, there was a large group of participants. The following give you an idea of the magnitude of each station’s contribution – some from as far away as 300km from the launch site!

Flight Path

The flight path itself was pretty much textbook, with one minor wrinkle. It was planned for the flight to exceed 28-30km, however this time the balloon burst early. This caused some tense moments during landing when it started getting very close to the River Murray! There were some thoughts that it might go swiming at one stage, however thankfully that was averted.

Flight Statistics

[table “” not found /]

Conclusion

Another successful flight and one we are happy to finally be able to complete.

Til next time – 73 from the Project Horus team