Horus 52 / SHSSP 2019 – Frequency & Tracking Data

Horus 52 – Saturday 9th February 11.00am Liftoff!

AREG is pleased to once again be involved with the International Space University’s Southern Hemisphere Space Studies Program hosted by the University of South Australia. This year one balloon is being launched from Mt Barker High School as part of the program. All amateurs across the state are invited to participate in the flight through collecting the RTTY telemetry. All you need is an SSB receiver on 70cm, and an interface to your computer. The rest is software!

You can find out more about the software you need to track the balloon via our software tracking page

Telemetry Payloads

As always, we’ll be flying the usual assortment of telemetry payloads, including:

  • Our usual 100 baud 7N2 RTTY telemetry on 434.650 MHz USB. This can be decoded using dl-fldigi, with a reception guide available hereNOTE: There is a known issue with dl-fldigi where it does not upload any received telemetry until about 10 minutes after the software is started. Any telemetry received in this time period will be queued and uploaded after the startup period has completed (i.e. no telemetry will be lost).Note: Recent testing of dl-fldigi’s decode performance has found that the auto-configured RTTY receive bandwidth is too narrow, and can detrimentally impact decode performance (by up to 3dB!).To fix this, open dl-fldigi, and in the Configure menu, select Modems, and then go to the ‘RTTY’ tab. Drag the ‘Receive filter bandwidth’ slider to 200, then click ‘Save’. Note that this setting will be reset whenever you hit the ‘Auto-Configure’ button!
  • 4FSK Telemetry decoder

    The new 4FSK Binary telemetry will be transmitting on 434.640 MHz USB. This uses a separate decoder, with setup instructions for this available here. We would love reports of how the 4FSK signal compares to standard RTTY!

 

Wenet Imagery Payloads

This flight will feature two ‘Wenet’ high-speed imagery payloads, as have been flown on many previous Horus launches. The centre frequencies for the transmissions are:

  • 441.200 MHz – Nadir-pointing (Downward) Imagery
  • 443.500 MHz – Horizon-pointing Imagery

These will be downlinking HD pictures throughout the flight, which will be available at this link:

http://ssdv.habhub.org/

Reception of the Wenet signal requires a RTLSDR and a Linux PC/Laptop. Instructions on how to set up the required software are available here.

Note that users running an ‘older’ version (Circa mid-2018) of the Wenet receiver software will need to apply a -220kHz offset to the above frequencies in their setup_rx.sh file (i.e. 440980000 or 443280000) – or just leave them at their defaults, which should already be correct.. Those running the latest version can just define the centre frequency as-is. Older versions of the Wenet software will show a lot of ‘Unknown Packet Type’ messages due to some new telemetry formats we are trialling on this flight.

Online Tracking

Tracking of the flight will be available on the HabHub Tracker, available at this link. (Note that other balloon launches will also be visible on this page, including the Bureau of Meteorology launches from Adelaide Airport).
Follow the #SHSSP hashtag on Twitter for updates from the launch and chase teams on the launch day.

Flight Prediction

The following will give you an idea of the expected flight track for Saturday. It is going to be a LONG chase this time! See you all on Saturday!

Horus 52 – On track for Saturday 9th Feb Launch

AREG is once again involved with the University of South Australia’s Southern Hemisphere Space Studies Program this year, which is run by UniSA on behalf of the International Space University. The launch, which was scrubbed last week due to the predicted landing zone is now planned for this coming Saturday 9th Feburary, with liftoff planned for ~11AM. The weather is looking much better!

The current predictions look as follows:

Payload Plans

While some details are still to be worked out, it’s looking like the following payloads will be flying:

  • RTTY – 434.650 MHz
  • 4FSK – 434.640 MHz
  • Wenet – 441.200 MHz  (downward facing images)
  • Wenet #2 – 443.5 MHz (horizon-facing images)

There is still a chance the second Wenet payload will be dropped from the launch due to weight restrictions, so if you don’t see any signal on 443.5 MHz, that’s what’s happened!

As always, amateurs from across the state are encouraged to take part, by collecting the telemetry data and relaying it to HabHub on the Internet. This data is used to help fill in any missing data the chase teams fail to capture, which they can use to help maximize their landing zone prediction accuracy. In that way, everyone taking part is adding to the success of the mission.

Tracking details will be provided closer to the launch. Keep watching the AREG website for details!

 

Getting Started on 630m (476kHz) – 7.45pm February 15th

The next meeting of the Amateur Radio Experimenters Group will be held on Friday 15th of February. This month we have Andrew VK5CV as guest presenter who will introduce the world of the 630m band on 476kHz. Andrew has been an active experimenter on this band for some time in Adelaide and is a fountain of knowledge on how to put a signal on air on this band, even from a suburban block.

www.qsl.net/dl4yhf/mf/mf.html

Example of an MF transmitter setup

Meeting Location and NEW TIME!

The meeting will be held at the Fulham Community Centre, Phelps Court, Fulham. From this month, AREG meetings will be starting earlier and will have some format changes. The hall will now open at 7.15pm and the meeting will start at 7.45pm on the dot. The restructured and shortened business meeting will be first with the guest presenter starting by 8.15pm.

After the formal part of the meeting, refreshments will be available (tea, coffee and cake) and you will have the chance to discuss what you have heard with the presenters each month! We hope this new format is a positive development for those attending AREG meetings!

Visitors are most welcome!

Advanced Notice – March & April Meetings – New Dates!

The Amateur Radio Experimenters Group also wishes to advice that we have changed the dates for our March and April meetings.

  • The March meeting will now be held on the 8th of March (2nd Friday) so as to avoid clashes with the team setting up for the John Moyle Field Day. The topic for this meeting should be confirmed shortly.
  • The April meeting will now be held on the 12th of April (again the 2nd Friday) so as to avoid clashing with Easter Good Friday. This meeting will hear from David VK5DGR on his work to develop FreeDV2020 – a new high quality audio version of his FreeDV HF digital voice transmission mode that uses roughly the same bandwidth as FreeDV 1600

Stay tuned for other special events that are also planned in the coming months! More information will be published on these as they are confirmed!

UniSA: Southern Hemisphere Space Studies Program – Horus 52 – POSTPONED TO 9th FEB

AREG will be launching a high-altitude balloon for the International Space University’s South Hemisphere Space Studies program, conducted by the University of South Australia again this year. The planned launch date is Saturday the 2nd of February, with liftoff around 10-10:30AM. The launch site will be the usual Mt Barker High School Oval location.

UPDATE 2019-01-31: Due to poor launch-day weather, this launch has been re-scheduled to 11AM on Saturday the 9th of February.

Payload Plans

While some details are still to be worked out, it’s looking like the following payloads will be flying:

  • RTTY – 434.650 MHz
  • 4FSK – 434.640 MHz
  • Wenet – 441.200 MHz  (downward facing images)

There may be a second Wenet payload on 443.5 MHz capturing outward-facing imagery, though this is yet to be confirmed.

As always, amateurs from across the state are encouraged to take part, by collecting the telemetry data and relaying it to HabHub on the Internet. This data is used to help fill in any missing data the chase teams fail to capture, which they can use to help maximize their landing zone prediction accuracy. In that way, everyone taking part is adding to the success of the mission.

WENET PAYLOAD NEWS

There have been some updates made to the Wenet HD imaging payload and receiver software, however all changes are backwards compatible. If you have a functioning Wenet receiver system, you *do not need to update for this launch*.

However, if you’re a bit more adventurous, the latest updates are on Github here: https://github.com/projecthorus/wenet

You will likely need to wipe your existing Wenet directory and follow the setup instructions from the start.

Stay tuned for further updates as we get closer towards the launch date…

73  Mark VK5QI

HNY 2019: January Meeting – HF Remote SDRs & AREG’s Remote Site Project

Firstly, Happy New Year 2019 to everyone. This year promises to be yet another action packed fun filled series of events brought to you by the members of the Amateur Radio Experimenters Group.

Next Meeting – Friday January 18th – 7.45pm

The next meeting of the Amateur Radio Experimenters Group Inc will be held on Friday the 18th of this month. The topic of the evening will start with a short introduction to the world of remote HF SDR receivers and how to access them.

It will then be followed by a workshop event looking at the original AREG project intended to setup and host one of these systems here in Adelaide. The original project was plagued with problems, most notably getting an internet link out to the site some 40km away from VK5RWN. In the end we weren’t successful in getting the microwave link to be stable. The secondary issue of local site noise at the receive site was never even addressed because the internet feed couldn’t be resolved.

Now that 2019 is here, and the opportunity of a new site has presented itself (that solves the internet access issue), the club is looking for members to form a new team to try and complete the project. The second half of the meeting this month will explore what tasks need to be done to make this a reality and we will be looking for volunteers to put their hands up to help

Visitors are always welcome! The club meets at the Fulham Community Centre, Phelps Crt, Fulham from 7.45pm. The presentation starts at 8.00pm and will be followed by coffee and cake before a formal business meeting.

We look forward to seeing you all there!

Project Horus – Telemetry Test Flight #2 (Horus 51) Flight Report

Today’s telemetry test flight (now designated as Horus 51) was performed with (mostly) good results! This launch was an experiment to investigate solutions to the ‘Horus Binary’ payload PLL-loss-of-lock issue that has been observed on previous launches. Three payloads were launched, with variations on insulation and transmit power, all using reprogrammed Vaisala RS41 radiosonde PCBs. As a result, there was a lot of telemetry to receive on this flight!

Getting ready to launch the payloads

The launch was a fairly relaxed affair, with only a small launch crew on-site. Launch occurred right on time at 11AM. It was quickly discovered that a bit too much helium was used (dodgy gas flow-rate meter!), and so the ascent rate was higher than expected resulting in the small balloon used bursting at 16.2km altitude.

Horus 51 Flight Path

As the pre-launch flight path prediction had the landing area somewhere south-west of Loxton, none of the launch crew attempted to chase this launch. Instead, Ivan (VK5HS) from the Riverland Radio Club lead a small team (Ivan, David and Peter) out from Renmark to recover the payload. As it turns out, the higher ascent rate and lower burst altitude resulted in the landing location being further away from Loxton than expected, but the Riverland boys were able to track payloads down to the ground and easily recover them not long after landing.

David (left) and Peter (right) with the recovered payloads.

Many thanks to Ivan & Co for making the effort to get out and chase, it is much appreciated!

Horus 51 - Flight Statistics

MetricResult
Flight Designation:Horus 51 - Telemetry Test Flight #2
Launch Date:2018-11-25 00:30 UTC
Landing Date:2018-11-25 01:40 UTC
Flight Duration:1 Hour 10 Minutes
Launch Site:-35.07568, 138.85701
Landing Site:-34.68642,139.92380
Distance Traveled:106 km
Maximum Altitude:16,201 m

Telemetry Statistics

Thanks to all who participated in the launch by receiving telemetry from one (or more!) of the three payloads. Statistics on how much telemetry was contributed by each receiver callsign is below:

Horus 51 - HORUSBINARY (434.640 MHz) Receiver Statistics

CallsignReceived PacketsPercentage of Flight ReceivedFirst-Received Altitude (m)Last-Received Altitude (m)
VK5FAAP403.7%49152951
VK5HS29226.9%1283660
VK5KX-3100892.7%632125
VK5NEX33530.8%148634601
VK5QI-951647.5%340142
VK5ST-489382.2%23741301
VK5WTF20.2%39593969
YOUR_CALL_HERE47844.0%2339296

Horus 51 - HORUSBINARY2 (434.650 MHz) Receiver Statistics

CallsignReceived PacketsPercentage of Flight ReceivedFirst-Received Altitude (m)Last-Received Altitude (m)
VK5APR11717.7%9053849
VK5FJGM26740.3%339410661
VK5KJP54682.5%20541313
VK5KX-264196.8%763103
VK5LJG46670.4%12754751
VK5LJG-940861.6%3641809
VK5NEX39659.8%290714293
VK5QI-964497.3%378103
VK5ST-253681.0%2248893
YOUR_CALL_HERE31447.4%298114293
vk5mad38558.2%146414293

Horus 51 - 4FSKTEST (434.660 MHz) Receiver Statistics

CallsignReceived PacketsPercentage of Flight ReceivedFirst-Received Altitude (m)Last-Received Altitude (m)
VK5APR78475.0%40513538
VK5DSP11611.1%926512591
VK5KX-2121.1%1515115449
VK5QI-961658.9%340144
VK5ST-188184.3%24041246
VK5WTF80877.3%601395

Please make sure you follow the configuration instructions when using the Horus Binary decoder, to avoid the ‘YOUR_CALL_HERE’ entries seen in the above tables!

Payload Testing Results

Previous Horus launches have seen the repurposed Vaisala RS41 payloads lose PLL-lock mid-flight, with the transmit frequency drifting up the 70cm band as temperature decreases. Testing on the ground indicated this may be due to the Radio IC (a Silicon Laboratories Si4032 FSK transmitter) failing with the low temperatures experienced during flight. The fact that the the RS41 sondes do not usually fail during their intended application pointed at the lower transmit power (25mW vs 50mW) used on Horus flights being a possible factor.

On previous flights the following results were seen:

  • Horus 49 (Anstey 2.0) – RS41 Foam Only, 25mW – No issues Encountered.
  • Telemetry Test Flight #1 – RS41 Foam Only, 25mw – Failed on Ascent at 9km altitude, recovered on descent at 1km altitude.
  • Horus 50 – Stock RS41, 25mW – Failed on descent for ~6 minutes between 13km and 9km altitude.

With 2 failures and one success, it was decided that more data needed to be gathered.

Foam-Only (Left), ‘Stock’ RS41 (Middle), Custom Enclosure (Right)

On this launch, two payloads were operated at 50mW transmit power, one with a ‘stock’ enclosure (‘HORUSBINARY’) and one with only the inner foam insulation (‘HORUSBINARY2’). Using only the inner foam insulation provides a significant weight reduction, cutting the payload weight almost in half (~120g to ~60g).

A third payload (‘4FSKTEST’), using a custom-built foam enclosure was also tested, transmitting at 25mW. This had a similar overall weight (66g) to the foam-only RS41 enclosure, and re-flew the RS41 board that failed on Horus 50.

A bug in the firmware, discovered after the Horus 50 flight, was also fixed for this launch. This fix allowed gathering of measurements from a temperature sensor on the silicon die of the radio transmitter IC – unfortunately the temperature measurements captured on previous launches are invalidated as a result of this bug.

Horus 51 Payload Temperatures

Sadly, the foam-only payload (‘HORUSBINARY2’) was observed to fail at 14.3km altitude during ascent, and recover at 4.8km on descent, failing with a radio IC temperature of 0 ˚C.

Failure of the HORUSBINARY2 payload, as observed by Joe VK5EI

Both the stock RS41 and custom enclosure payload remained operational throughout the flight. The overall higher temperatures reported by the Stock RS41 payload may be a result of a bias in the temperature sensor, or may be a result of the better insulation – Further investigation will be performed once the payloads make their way back to Adelaide.

Curiously, the two other payloads reported radio IC temperatures lower than the failure point of the foam-only payload (0˚C), indicating that perhaps it is not the radio IC at fault, but another component on the PCB. Further investigation will be performed on RS41 PCBs using selective cooling of components, prior to the next Horus launch sometime in January 2019.

However, based on the results from this flight, it appears that the safest option for the moment is the Stock RS41 enclosure, transmitting at 50mW. As always, Horus flights use  redundant telemetry transmitters, so that a failure of a single transmitter does not compromise our ability to track and recover!

Project Horus – Telemetry Test Flight #2 – Sunday 25th November 11AM CDST

UPDATE: Predictions look good, so this flight will be going ahead as planned. The launch team will not be chasing this flight – others are welcome to chase/recover the payloads if they wish.

Current planned flight parameters (for prediction purposes) are a 4m/s ascent rate, 20km burst altitude, and a ~7m/s descent rate.

 

On Sunday, the 25th of November, Project Horus will be performing a small balloon launch from Mt Barker High School Oval, at approximately 11AM CDST. Live flight tracking will be available on the HabHub online tracker as usual. A guide on how to decode the new Horus binary telemetry mode is available here.

This launch is another test flight of the new ‘Horus Binary’ telemetry payload, which uses a new modulation mode developed by David Rowe VK5DGR and Mark Jessop VK5QI with 6dB better performance than the usual RTTY telemetry. This telemetry mode has been flown on a few recent Project Horus flights, with mixed success – The modem has performed flawlessly, the payloads themselves not so much! These flights have flown reprogrammed Vaisala RS41 radiosondes, which while working perfectly on Bureau of Meteorology launches, have proven troublesome on Horus launches!

Drifty Horus Binary Payload – Hopefully not on this this flight!

The last telemetry test flight suffered a loss of PLL lock on ascent, believed to be due to temperature issues, causing the payload to drift right up the 70cm band. On Horus 50, a similar fault occurred on descent, though the payload recovered within a few minutes. Further investigations confirmed a temperature issue, likely due to the lower transmit powers used on Horus flights (25mW) compared with the stock transmit power of 50mW.

This flight aims to test a few different variations on the payload flown on Horus 50, to determine if transmitting at a higher power keeps the payload alive. A few different modifications to the payload insulation will also be tested.

Currently we plan to fly 3 telemetry payloads (all on USB, +/- temperature drift):

  • 434.640 MHz – Callsign ‘HORUSBINARY’ – Unmodified RS41, 50mW TX power.
  • 434.650 MHz – Callsign ‘HORUSBINARY2’ – RS41 without outer plastic shell, 50mW TX power. Prioritise reception of this payload.
  • 434.660 MHz – Callsign ‘4FSKTEST’ – RS41 PCB in custom enclosure, 25mW TX power.

The Horus Binary uploader script will automatically determine the payload callsign as long as you are running a recent version. Please make sure you have updated to the latest version (2018-11-15) of the Horus Binary uploader before this flight, otherwise the HORUSBINARY2 payload will not be recognised, and data for the other payloads may be corrupted. Those who were set up for Horus 50 can simply download the latest payload ID list, and place it in their horusbinary directory.

Launch will be from the usual Mt Barker High School Oval site, and launch teams will be on-site around 10:15AM, for a 11AM launch. All are welcome!