Next Fox-Hunt – 8th September

AREGs next car-based fox hunt will be held this coming Friday the 8th of September, starting from the car park of the North Adelaide Aquatic Centre Carpark at 6:30 PM. We’ll have three foxes deployed around the Adelaide area, on both the 2m and 70cm bands, so come along and have a go!

The frequencies will be:

  • 145.300 MHz (1W transmit power)
  • 144.390 MHz (100mW transmit power)
  • 439.400 MHz (50mW transmit power)

As usual, liaison will be on the VK5RSB Summertown 70cm repeater which operates on 439.900 (-5MHz) 91.5 CTCSS. Please come up on the repeater so we know how you are faring throughout the evening!

The event is open to anyone with radio direction finding equipment and will cover a ~5km radius from the start location. We would love to see you there!

73

Mark VK5QI

Horus 60 Flight Report

Horus 60 was launched on the 20th of August 2023 as part of AREG’s 25th Anniversary celebrations, and featured our popular SSTV imagery payload along with a new high-quality Wenet imagery payload and other experimental payloads.

On this launch we had Geordie VK3CLR along for the chase, who put together a great video of the day’s activities, and tells the tale better than I could write it up here!

Thanks again to Geordie for producing this!

A dashboard showing telemetry from the flight is available here, and the main statistics from the flight are shown in the following table:

Horus 60 Flight Statistics

Launch Date: 2023-08-20T00:22:27.000000Z
Landing Date: 2023-08-20T02:35:26.000000Z
Launch Site: -35.07586, 138.85677
Landing Site: -35.34007, 139.67903
Distance Travelled: 80 km
Maximum Altitude: 35407 m

Horus 60 Flight Path

SSTV Payload Results

The SSTV payload produced excellent imagery throughout the flight, though unfortunately we had a GPS fault again (likely due to interference from an adjacent payload), so no position/altitude overlays were shown on the images.

Images were received from many people around the Central SA area, with submissions for the SSTV reception certificate from: VK5KVA, VK5KX, VK5ST, VK5ZBI, VK5AV, VK5MA, VK5CLD, VK3FUR/5 and VK5ZM. If you received imagery from the flight, please email us at vi25areg@areg.org.au to get your certificate!

Horus 60 SSTV Reception Certificate Sample

Wenet HQ Imagery Payload

Horus 60 also had the first flight of a new Wenet imagery payload, this time utilising a PiCamera HQ and a large lens, promising much higher quality imagery than we’ve captured previously.

While previous attempts at using higher quality optics have had issues with defocusing in cold temperatures, on this flight the camera performed perfectly, with some of the best quality imagery we’ve seen from a Horus launch in a very long time!

As per tradition, just before packing up the Wenet payload, the chase team took a group photo near the landing site:

The chase team: Mark VK5QI, Drew VK5CLD, Will VK5AHV, Michaela VK3FUR and Geordie VK3CLR

Thanks to all that helped receive the Wenet imagery:

VK3TNUpi4-1: 94460 packets (23.06 MB)
VK5CLD-9: 106422 packets (25.98 MB)
VK5KX-9: 165174 packets (40.33 MB)
VK5IS: 102056 packets (24.92 MB)
VK5QI-9: 113723 packets (27.76 MB)

The more receivers we have during a flight, the higher chance we have of obtaining clear imagery for live display on ssdv.habhub.org!

Primary Telemetry Reception – VI25AREG

For this flight, the primary telemetry payload used the VI25AREG callsign, and performed flawlessly (as we always hope it will!). We had many receivers on this flight, with statistics on who received how many packets in the following table:

CallsignReceived PacketsPercentage of Flight ReceivedFirst-Received Altitude (m)Last-Received Altitude (m)
BARC-RRR177795.8%664255
VK3APJ27014.6%114956738
VK3BKQ36219.5%2602227416
VK3IRV613.3%3186834503
VK3TNU71438.5%83549180
VK5ALG144678.0%8646738
VK5AMH169391.3%1731964
VK5APR159085.8%12406700
VK5ARG176094.9%477911
VK5BD137173.9%55186738
VK5CLD23512.7%239934005
VK5CLD-9151681.8%34222
VK5DJ66235.7%978424529
VK5DSP-hab62433.7%257436700
VK5IS168290.7%7233247
VK5KX158085.2%124022
VK5KX-9143777.5%895570
VK5LN110259.4%116837329
VK5NEX152982.5%9646738
VK5QI-9134872.7%33916031
VK5RK107858.1%166129780
VK5RR-VK5FO43523.5%147636700
VK5ST-4146679.1%31466816
VK5TRM159786.1%15871018
VK5ZBI158585.5%12206777
VK5ZQV79743.0%156016777
vk5mhz54629.4%376124970

Thanks to all that received!

Radiation Sensor Payload – HORUSRADMON

This payload was added on somewhat last-minute, and included a photo-diode-based radiation sensor, with the aim of investigating gamma ray levels throughout the flight, similar to what has been performed on previous flights.

Horus 60 Radiation Sensor Results

As expected, the radiation count increased throughout the ascent, before falling again above 20km altitude due the Regener-Pfotzer Maximum effect. Some noise was observed on the sensor just after burst, likely due to the turbulence from the initial fast descent.

Thanks to everyone that received telemetry from this payload, even with the short notice of it’s inclusion in the flight!

CallsignReceived PacketsPercentage of Flight ReceivedFirst-Received Altitude (m)Last-Received Altitude (m)
BARC-RRR89991.7%609189
VK3BKQ40.4%3480635038
VK5ALG66367.7%10926727
VK5ALG-942843.7%844976
VK5APR79180.7%12186804
VK5ARG86288.0%5071209
VK5CLD-970772.1%34716
VK5DJ32032.7%277846727
VK5DSP-hab31432.0%262166727
VK5KX-971573.0%901276
VK5QI-967669.0%34616113
VK5RK28429.0%301316644
VK5ST-478880.4%28462375
VK5TRM76578.1%17621264
vk5mhz191.9%28043471

Helium Tracker Payload

This flight also saw a new LoRaWAN payload from Liam VK5ALG, which was received via the Helium Network using the 923 MHz ISM band. On this flight the furthest reception report was from a station in Peterborough, at approximately 250km range. Future flights of this will use a higher gain antenna, and we hope to see even higher reception ranges.

We hope to have positions from this payload showing up on the SondeHub-Amateur tracker on future launches!

Conclusion

A big thanks to everyone that participated in this launch, from those that came along to the launch site, chased, or received telemetry and imagery from home!

We hope to perform a few more flights later this year, including the return of a cross-band repeater payload!

 

VI25AREG Special QSL Card – PREVIEW

Our VI25AREG Special Event QSL Card is now off to the printers. QSL cards will be available for ordering via our QSL Manager, Charles M0OXO.

The callsign still has 12 days to run and will conclude on 31st August 2023!

 

Cards can be requested using the Online QSL Request Service (OQRS) which offers options for both direct QSLs as well as via the Bureau. Note: We will only distribute cards via the M0OXO OQRS service. You can access the service via the following link:

(CLICK HERE)

 

Next AREG Meeting – Ionosphere 101 with Dave Neudegg

The next AREG meeting will be held on Friday the 18th of August at the Fulham Community Centre – Phelps Court, Fulham, with doors opening at 7:15 PM, and the presentation kicking off at 7:45 PM. Everyone is welcome!

This month’s presentation will be from Dave Neudegg, with the title ‘Ionosphere 101’. Dave will give us a run-down on how the Ionosphere works and gives us the ability to communicate worldwide via HF radio!

Ionosphere F2-Layer Critical Frequency Map, from the Australian Space Weather Service

If you’ve never come along to one of our meetings, we’d love to see you there, all guests are welcome. For our remote members, the meeting will be broadcast via Zoom, and we’ll also be broadcasting live on YouTube, on Hayden VK7HH’s HamRadioDX channel:

After the talks we’ll all be given an opportunity to have an eyeball QSO among ourselves whilst enjoying a tea or coffee and a biscuit.

73, Mark VK5QI

Next Fox Hunt – Friday 11th August

AREGs next car-based fox hunt will be held this coming Friday the 11th of August, starting from the car park of the North Adelaide Aquatic Centre Carpark at 6:30 PM. We’ll have three foxes deployed around the Adelaide area, on both the 2m and 70cm bands, so come along and have a go!

The frequencies will be:

  • 145.300 MHz (1W transmit power)
  • 144.390 MHz (100mW transmit power)
  • 439.400 MHz (50mW transmit power)

As usual, liaison will be on the VK5RSB Summertown 70cm repeater which operates on 439.900 (-5MHz) 91.5 CTCSS. Please come up on the repeater so we know how you are faring throughout the evening!

The event is open to anyone with radio direction finding equipment and will cover a ~5km radius from the start location. We would love to see you there!

73

Mark VK5QI

Next Project Horus Launch – Horus 60 – Sunday 20th August

UPDATE 21/8: Thanks to all that helped track this flight, it was a great success! A blog post with more information, including lots of great images, will be up in about a week.

Horus 60 Flight path prediction as of 17th August

As part of the VI25AREG celebrations, AREG’s High-Altitude Ballooning sub-group, Project Horus, is planning their next launch for Sunday the 20th of August, with a planned launch time of 10 AM ACST. Backup dates if we have to slip due to weather are the 27th of August… and that’s it!

This launch is currently planned to be performed from the Mt Barker High School Oval with the launch team arriving on site from around 9:00 AM. Note that access to the oval is via Stephenson street, and parking near the oval is extremely limited. 

The payloads for this flight will include:

  • A FM-SSTV Transmitter on 145.100 MHz
  • A Wenet Imagery transmitter on 443.500 MHz
  • Primary Horus Binary telemetry on 434.200 MHz
  • Experimental Radiation Sensor payload (Horus Binary telemetry) on 434.210 MHz 

Details on these payloads are available further below.

Tracking of the flight will be via the SondeHub-Amateur tracker, available by clicking this link.

A dashboard showing telemetry from the payloads is available at this link.

Details on the payloads flying are available below:

Primary Telemetry – 434.200 MHz – VI25AREG

Reprogrammed RS41The primary tracking telemetry will be transmitted on 434.200 MHz using the Horus Binary 4FSK data mode. Amateurs in the Adelaide and Central SA region are also encouraged to get involved with the flight through receiving and uploading flight telemetry from our 70cm band tracking beacons. Every piece of telemetry data is valuable to the flight tracking and recovery teams so if you can help join the distributed receiver network to collect that data you will be making an important contribution to the project!

If you try receiving the telemetry from this flight, you’ll need a SSB-capable 70cm receiver (or a SDR), and the Horus-GUI telemetry decoder software. A brief guide on setting this up is available here: https://github.com/projecthorus/horusdemodlib/wiki/1.1-Horus-GUI-Reception-Guide-(Windows-Linux-OSX)

Listeners that already have Horus-GUI installed are encouraged to update to the latest version, which is available at this link.

Note that you will need to use a USB ‘dial’ frequency of 434.199 MHz for the 4FSK signal to be centred in your receiver passband and hence be decodable.

There will also be an experimental radiation sensor payload (HORUSRADMON) on 434.210 MHz (434.209 MHz USB dial frequency). If you can only receive one, prioritise the 434.200 MHz signal.

FM SSTV Imagery – 145.100 MHz

This launch will most likely be flying a FM SSTV transmitter operating on 145.100 MHz FM. It will run approximately 200mW transmit power. The transmitter will have 1 minute gaps between image transmissions to avoid overheating the transmitter. This payload last flew on Horus 59 with good results.

SSTV image from Horus 59

The payload will be transmitting images using the PD120 SSTV mode throughout the flight, and can be decoded using any SSTV software capable of decoding this mode (pretty much all of them!). This mode is what was commonly broadcast from the International Space Station.

Examples of suitable software you can use to decode the SSTV pictures include:

Any FM receiver (including handhelds) should be capable of receiving this payload, though as with the cross-band repeater, a Yagi antenna may be necessary for reliable reception at the edges of the transmitter footprint.

We’ve also setup a temporary 2m SSTV skimmer up at AREG’s remote HF receive site, which (if it works!) will post received images here: https://botsin.space/@aregsstv/tagged/PD120

We will have some digital certificates available for listeners that submit an image from the highest 1km of the flight (to be determined after the flight has finished). Email your images to vi25areg@areg.org.au !

Wenet Imagery – 443.500 MHz

Imagery on this flight will be transmitted via the Wenet downlink system, which uses 115kbit/s Frequency-Shift-Keying to send HD snapshots. Reception of the Wenet imagery requires a Linux computer, a RTLSDR, and a 70cm antenna with some gain (a 5-element Yagi is usually enough).

This payload will be trialing a PiCamera HQ, with a much larger lens. This will hopefully give us much higher quality imagery than we’ve seen previously, so long as we don’t hit focus drift issues like we have seen on previous flights.

Wenet imagery from a previous launch.

A guide on how to get set up to receive the Wenet signal is available here: https://github.com/projecthorus/wenet/wiki/Wenet-RX-Instructions-(Linux-using-Docker)

Please note the transmit frequency of 443.5 MHz, which may require listeners to re-configure their Wenet setup. Listeners who are already setup to receive Wenet should consider updating their decoding software to the latest version (Due to be released at the beginning of August 2023), with update instructions available here.

During the flight, the live imagery will be available at this link: http://ssdv.habhub.org/