Next Project Horus Launch – Horus 59 – 26th February 10AM

The AREG’s High-Altitude Ballooning sub-group, Project Horus, is planning their next launch for Sunday the 26th of February, with a planned launch time of 10 AM ACDT.

This launch will be performed from the Auburn Community Oval, with the launch team arriving on site from around 9:15 AM. Spectators are welcome!

The payloads for this flight will include:

  • A FM-SSTV Transmitter on 145.100 MHz
  • A Wenet Imagery transmitter on 443.500 MHz
  • Horus Binary telemetry on 434.200 MHz
  • Radiation Sensor Payload on 434.210 MHz

Details on these payloads are available further below.

Tracking of the flight will be via the SondeHub-Amateur tracker, available by clicking this link.

A dashboard showing telemetry from the primary and radiation sensor payloads is available here.

Details on the payloads flying are available below:

Primary Telemetry – 434.200 MHz

Reprogrammed RS41The primary tracking telemetry will be transmitted on 434.200 MHz using the Horus Binary 4FSK data mode. Amateurs in the Adelaide and Central SA region are also encouraged to get involved with the flight through receiving and uploading flight telemetry from our 70cm band tracking beacons. Every piece of telemetry data is valuable to the flight tracking and recovery teams so if you can help join the distributed receiver network to collect that data you will be making an important contribution to the project!

If you try receiving the telemetry from this flight, you’ll need a SSB-capable 70cm receiver (or a SDR), and the Horus-GUI telemetry decoder software. A brief guide on setting this up is available here: https://github.com/projecthorus/horusdemodlib/wiki/1.1-Horus-GUI-Reception-Guide-(Windows-Linux-OSX)

Listeners that already have Horus-GUI installed are encouraged to update to the latest version, which is available at this link.

Note that you will need to use a USB ‘dial’ frequency of 434.199 MHz for the 4FSK signal to be centred in your receiver passband and hence be decodable.

FM SSTV Imagery – 145.100 MHz

This launch will most likely be flying a FM SSTV transmitter operating on 145.100 MHz FM. It will run approximately 200mW transmit power. The transmitter will have 1 minute gaps between image transmissions to avoid overheating the transmitter. This payload last flew on Horus 50, and has since been upgraded to support higher resolution imagery.

SSTV Imagery Example

The payload will be transmitting images using the PD120 SSTV mode throughout the flight, and can be decoded using any SSTV software capable of decoding this mode (pretty much all of them!). This mode is what was commonly broadcast from the International Space Station.

Examples of suitable software you can use to decode the SSTV pictures include:

Any FM receiver (including handhelds) should be capable of receiving this payload, though as with the cross-band repeater, a Yagi antenna may be necessary for reliable reception at the edges of the transmitter footprint.

We’ve also setup a temporary 2m SSTV skimmer up at AREG’s remote HF receive site, which (if it works!) will post received images here: https://botsin.space/@aregsstv/tagged/PD120

If you do receive images, please post them to Social Media and on Twitter include the #horus59 hashtag so everyone can see them! Reception reports would also be appreciated, please send these to vk5arg@areg.org.au

Radiation Sensor Payload – 434.210 MHz

A radiation sensor payload, using a Geiger-Muller Tube, will also be launched on this flight. This will be transmitting on 434.210 MHz, also using the Horus Binary 4FSK  data mode. The aim of this payload is to investigate the variation in radiation exposure throughout the flight, and compare it with data from previous launches.

This telemetry can be decoded using the same Horus-GUI software as the primary telemetry. Note that you will need to use a USB ‘dial’ frequency of 434.209 MHz for the 4FSK signal to be centred in your receiver passband and hence be decodable.

Wenet Imagery – 443.500 MHz

Imagery on this flight will be transmitted via the Wenet downlink system, which uses 115kbit/s Frequency-Shift-Keying to send HD snapshots. Reception of the Wenet imagery requires a Linux computer, a RTLSDR, and a 70cm antenna with some gain (a 5-element Yagi is usually enough).

This payload will most likely be trialing the new Raspberry Pi Camera v3, which will hopefully bring improved image quality (if it works!).

Wenet imagery from a previous launch.

A guide on how to get set up to receive the Wenet signal is available here: https://github.com/projecthorus/wenet/wiki/Wenet-RX-Instructions-(Linux-using-Docker)

Please note the transmit frequency of 443.5 MHz, which may require listeners to re-configure their Wenet setup. Listeners who are already setup to receive Wenet should consider updating their decoding software to the latest version (December 2022), with update instructions available here.

During the flight, the live imagery will be available at this link: http://ssdv.habhub.org/

SHSSP 2023 Flight Report

In January 2023, the Project Horus High-Altitude Ballooning group performed two launches, Horus 58 on the 15th of January, and the Southern Hemisphere Space Studies Program 2023 launch, on the 29th of January.

Southern Hemisphere Space Studies Program Background

The Southern Hemisphere Space Studies Program is a multi-week course conducted by the University of South Australia, in partnership with the International Space University. This is an intensive program designed to provide a multidisciplinary understanding of the key activities and areas of knowledge required in today’s space professions. It covers a wide range of topics including space systems engineering, space science, space law, and much more!

The Amateur Radio Experimenters Group has been involved in this program for many years, assisting with High-Altitude Balloon workshops. Over the course of a week, participants learn about the regulatory, technical, and practical aspects of a high-altitude balloon launch; develop a payload to fly on the launch; and finally perform the launch and analyse the collected data.

The SHSSP 2023 High-Altitude Balloon Cohort

This year’s participants were split into teams focusing on different aspects of the flight:

  • Launch Planning & Execution, lead by Mark VK5QI
  • Payloads, lead by Matt VK5ZM
  • Ground Stations & Telemetry, lead by Bill VK5DSP
  • Imagery and Data Analysis, lead by David Bruce

This years launch included multiple imaging payloads (horizon and nadir-facing), and a radiation sensor payload, which the participants calibrated against a Cobalt-60 source and a known-good personal dosimeter. The dosimeter was also flown as a backup.

Launch Planning & Delay

Planning for the flight started on Monday the 23rd, where it was realised that a weather front was going to be moving through the state over the launch weekend. This meant that there was significant uncertainty in the weather models, and so both the flight path predictions, and the predictions for launch day weather was changing drastically with every model update.

On Wednesday the call was made based on the current weather models to move the launch from Saturday to Sunday (with a fairly significant effort in rearranging all the launch-day logistics on the part of UniSA!). At this point the cloud forecasts for Sunday looked significantly better (no cloud!), and the predicted flight path resulted in a landing not too far from Auburn.

Unfortunately, as we got closer to the launch day, the weather forecasts got worse and worse. The weather front which was originally predicted to pass over the launch area on Saturday was now ‘running late’, and would still give us grief on the Sunday. While the wind and temperature forecasts looked good, we now had a 100% chance of blanket cloud cover (rending the Nadir-facing imagery useless), and a reasonable chance of showers!

Cloud forecast predictions for the Sunday (as forecast Saturday morning), from Windy.com

Additionally, the predicted flight path was now trending further the south-east, with the landing now predicted somewhere between Truro and Blanchetown.

Unfortunately delaying the launch to the following weekend was not practical due to other schedule conflicts, so planning progressed for a Sunday morning launch, hoping that the forecast rain would be gone by the time of the launch.

Launch, Chase & Recovery

The morning of the launch the SHSSP participants and the AREG launch crew assembled at the launch site to overcast skies. Thankfully most of the heavier showers had fallen overnight, but a light drizzle persisted right throughout the launch.

SHSSP participants preparing the payloads

Preparations for the launch quickly got underway, with each SHSSP team working on their respective areas. Payloads were prepared, balloons filled, ground-stations setup, and by 11:30 AM everything was ready for launch.

SHSSP participants filling the balloon

Just as the count-down began, the wind picked up, resulting in one of the payloads having a bit of a bounce on the ground before the entire payload train rose slowly into the air.

Launch!

After the balloon was released, the SHSSP teams headed back to the ground-station to watch the live telemetry and images, while the chase teams headed off towards the landing site (via the Truro bakery of course!). Unfortunately the SSDV website crashed about 10 minutes before the launch, so those watching from home were unable to see the live imagery.

SHSSP 2023 Flight Path

The balloon rose to a maximum altitude of 35431m (a good performance for the balloon in use) before bursting and descending. The descent was a fair bit faster than expected, later discovered to be due to about 700g of the 1600g balloon getting tangled around the parachute! For a while it looked like the payloads may end up landing a long way from a road, but the high descent rate resulted in them landing in a fairly accessible area, only a short walk from a nearby track.

The recovery teams (lead by Mark VK5QI, Liam VK5LJG, Steve VK5ST, with Don VK5KT joining us near the landing) were able to watch the payloads descend the last few hundred metres, before landing… in a tree.

This slideshow requires JavaScript.

Getting the payloads out of the tree took a bit of effort with a long pole and a knife, but eventually the payloads were all cut loose. Thanks again to all those that came out on the chase!

Data Analysis

From the flight came a range of data products, including:

  • ‘Live’ radiation measurements from the Geiger Counter payload
  • Cumulative radiation dose measurements from the personal dosimeter (3 uSv dose over the flight)
  • Lots of imagery!

Some examples of imagery from the Horizon-facing camera are shown in the following gallery:

This slideshow requires JavaScript.

Unfortunately the Nadir-facing imagery showed nothing but cloud, so the participants made use of the imagery captured on the Horus 58 launch for their analysis. They used the open source QGIS software to geo-reference some of the captured images, and then perform pan-sharpening of imagery of the same area captured by the Sentinel-2A earth observation satellite, essentially increasing the spatial resolution of the Sentinel imagery. The following images show an example the original low resolution (10 m), and pan-sharpened high resolution (1.5 m) imagery.

This slideshow requires JavaScript.

The radiation sensor data showed similar levels to the previous Horus 58 launch, with the Pfotzer-Regener maximum observed around 20km altitude.

Radiation levels (top) observed throughout the SHSSP 2023 flight.

The telemetry data for the flight was also shown live on a data dashboard, which can be viewed at this link. 

Receiver Statistics – Horus Binary Telemetry

As with the Horus 58 flight, we saw a great response from the local amateur radio community in helping to receive telemetry. This flight saw 37 unique callsigns receiving telemetry, including three stations run by the SHSSP participants. This flight also got high enough for a few stations in Melbourne to join in on the fun!

SHSSP 2023 - SHSSP2023 Receiver Statistics

CallsignReceived PacketsPercentage of Flight ReceivedFirst-Received Altitude (m)Last-Received Altitude (m)
BARC-RRR42720.9%10238997
SHSSP-RJ119558.5%31229111
SHSSP-VM22010.8%1207829404
VK3BKQ1698.3%3350531121
VK3BQ1859.1%3353133632
VK3JUG-5164980.8%51144619
VK3TNU pi3-282240.3%1193529111
VK5AKH165481.0%31229494
VK5AKK191193.6%4162152
VK5ALG180588.4%6094504
VK5ALG-9201198.5%31278
VK5AMH180888.6%19691092
VK5APR158777.8%7772152
VK5ARG195895.9%310952
VK5CLD188092.1%4001043
VK5CV160178.4%19164581
VK5DJ121159.3%124368653
VK5DMC127362.4%69674504
VK5FD191994.0%4732644
VK5GY190693.4%7024776
VK5IS194295.1%5052152
VK5KX-i5200198.0%31178
VK5LO-591344.7%60929290
VK5MAS94746.4%1382429111
VK5NEX187491.8%8463025
VK5NTM195095.5%846251
VK5OI100.5%42744214
VK5PJ182989.6%137578
VK5QI-9188792.5%31279
VK5RK192494.3%5052201
VK5RR-VK5FO753.7%6852220
VK5ST-4192494.3%5941971
VK5ST-9110654.2%558378
VK5ST-991119958.7%66814717
VK5SWR291.4%24524446
VK5TRM191894.0%1205858
VK5ZM108853.3%2762878
VK5ZQV114456.1%176611187
vk5mad100.5%66546838

SHSSP 2023 - SHSSPGEIGER Receiver Statistics

CallsignReceived PacketsPercentage of Flight ReceivedFirst-Received Altitude (m)Last-Received Altitude (m)
BARC-RRR196596.4%47973
SHSSP-TW187692.0%3092744
SHSSP-VM115256.5%3095681
VK3BQ211.0%3490935370
VK3TNU pi3-298248.2%101058851
VK5AKK157277.1%78982051
VK5ALG184990.7%6124601
VK5ARG195595.9%305746
VK5CV10.0%676676
VK5LO-5101449.7%163831998
VK5OI156776.9%37114728
VK5QI-9187592.0%30873
VK5RR-VK5FO108953.4%234624932
VK5ST-4193694.9%495941
VK5ST-9117457.6%550573
VK5SWR128963.2%28682467
VK5ZM108553.2%2769873

Receiver Statistics – Wenet Imagery

Unfortunately due to the failure of the SSDV website just prior to launch, we were unable to obtain statistics of who was uploading telemetry throughout the entire flight. Data was recorded until about 1 hour into the flight, and is presented below. The SSDV webpage will be back up and running for the next launch.

Thanks in particular to the stations that setup portable to try and capture as much telemetry as possible from the flight:

This slideshow requires JavaScript.

Nadir-Facing Imagery

SHSSP23_1: 92090 packets (22.48 MB)
VK5QI-9: 64781 packets (15.82 MB)
VK5ST: 16 packets (0.00 MB)
VK5CLD: 4 packets (0.00 MB)
VK5LO: 44346 packets (10.83 MB)
VK5KX: 128164 packets (31.29 MB)

Outward-Facing Imagery

VK5DSP: 20904 packets (5.10 MB)
VK5QI-9: 38550 packets (9.41 MB)
VK5ALG-9: 17343 packets (4.23 MB)
VK5DSPshssp: 13084 packets (3.19 MB)
VK5AKH: 53917 packets (13.16 MB)
VK5PW: 36824 packets (8.99 MB)
VK5KX-2: 52495 packets (12.82 MB)

 

Conclusion

Even with the non-ideal weather, the SHSSP High-Altitude Balloon workshops and launch went well, with the participants certainly enjoying the experience! Thanks again to UniSA and the International Space University for letting us participate in the SHSSP again this year, and we look forward to building on this in next year’s program.

As always, a big thank you to all of our community members who get setup to track out flights, be it with a portable station, at home, or out on the chase. Keep an ear out for our next launch, which should be happening late February 2023!

SHSSP 2023 - Flight Statistics

MetricResult
Flight Designation:SHSSP 2023
Launch Date:2023-01-29 01:21Z
Landing Date:2023-01-29 03:43Z
Flight Duration:~2.5 hours
Launch Site:-34.02945, 138.69169
Landing Site:-34.43088, 139.41885
Distance Traveled:80.4 km
Maximum Altitude:35,431 m

Next Fox Hunt – THIS FRIDAY NIGHT (and daytime foot hunt/picnic next month)

AREGs next car-based fox hunt will be held this coming Friday the 10th of February, starting from the car park of the North Adelaide Aquatic Centre Carpark at 6:30 PM.

We’ll have three foxes deployed around the Adelaide area, on both the 2m and 70cm bands, so come along and have a go!

As usual, liaison will be on the Summertown 70cm repeater which operates on 439.900 (-5MHz) 91.5CTCSS.

The event is open to anyone with radio direction finding equipment and will span most of the Adelaide metropolitan area. We would love to see you there!

Also, next month’s hunt will be a daytime foot hunt/BYO picnic to be held on Sunday the 5th of March, kicking off at noon at Drage Reserve, Felixstow. This will be family friendly event so make sure you so SAVE THE DATE. Stay tuned for more details on this event, to be posted here in the very near future.

Horus 58 Flight Report

In January 2023, the Project Horus High-Altitude Ballooning group performed two launches, Horus 58 on the 15th of January, and the Southern Hemisphere Space Studies Program 2023 launch, on the 29th of January. This is the first of two flight reports, with the SHSSP 2023 report coming soon!

Horus 58 – Test Flight – 15th January 2023

The Horus 58 launch was intended as a flight test of the payloads to be used in the SHSSP 2023 launch, and included:

  • 2x Horus Binary telemetry payloads, one with a radiation sensor.
  • Outward-Facing Wenet Imagery
  • Nadir (Downward) Facing Wenet Imagery, with an IR filter
  • LoRaWAN Telemetry Beacon (not used in the SHSSP launch)

In particular, the radiation sensor payload (using a Geiger-Muller Tube) and the Nadir-Facing imagery payload were newly built and needed to be flight-proven to limit the chances of failure on the upcoming SHSSP 2023 launch. Also flown was a LoRaWAN payload built by Liam VK5ALG, which was received by TheThingsNetwork gateways.

Peter VK5KX’s Ground-Station, setup at the Auburn launch site.

This launch also provided a great opportunity for the local amateur radio community to get setup to receive the many telemetry signals which would be broadcast from both launches. We saw many stations receive both the low-rate Horus Binary telemetry, and the high-speed Wenet Imagery payloads.

Launch, Chase and Recovery

The launch day had excellent weather, with mild temperatures and calm winds at the launch site. Launch preparations took a little bit longer than expected due to less people around, but we were still able to get the launch in the air by 10:30 AM local time.

This slideshow requires JavaScript.

With the balloon in the air, two chase teams (lead by Mark VK5QI, and Liam VK5ALG) then departed from the launch site to head off to the landing area. While making a lunch stop at the Eudunda Bakery, they were able to sight the balloon in the air, and even get a picture of the balloon before it burst at 33.359 km altitude.

Horus 58 at 33 km altitude, seen from the ground at Eudunda, SA

After burst, the chase teams headed south of Eudunda, where they met up with Steve VK5ST who was also out chasing. The payloads eventually landed a fair way into a property, but thanks to the landowner (Condor Laucke, of Laucke Mills), they were able to gain access and recover the payloads.

Payload Results

All payloads performed almost perfectly on this flight! The only small issue was seen on the Horizon-facing imagery payload, which was slightly out of focus (an easy fix once back on the ground). The Nadir (downward) facing payload took many high quality images of the ground underneath the launch site, which proved very useful to the SHSSP 2023 participants for reasons to be discussed later!

This slideshow requires JavaScript.

The radiation sensor payload data clearly showed an increase in radiation levels as the payloads increased in altitude to ~20 km, and then a decrease in levels above that. This effect is known as the ‘Pfotzer-Regener Maximum’. All the sensor data from this flight can be seen on an interactive dashboard available here.

The LoRaWAN payload also performed well, being received as far away as Portland, Victoria:

Receiver Statistics – Horus Binary Telemetry

We saw a great turnout of receivers on this launch, with 30 unique callsigns receiving the Horus Binary telemetry. Thanks to all that helped receive telemetry from this flight!

Horus 58 - HORUS V2 Receiver Statistics

CallsignReceived PacketsPercentage of Flight ReceivedFirst-Received Altitude (m)Last-Received Altitude (m)
BARC-RRR146576.9%3441524
VK3BKQ-PORTARLINGTON10.1%3186031860
VK3JUG70.4%1653117237
VK3OF86245.3%1268111840
VK3TNU pi3-277240.5%2060010465
VK3TRO70.4%2502330667
VK5AKK173591.1%12133056
VK5APR162085.1%13441443
VK5ARG185597.4%7061130
VK5CLD159283.6%926524
VK5CV116761.3%34651964
VK5DMC56329.6%273662466
VK5DSP145976.6%37611934
VK5DSP-2144175.7%32254563
VK5FD175492.1%3594888
VK5GA159683.8%7921767
VK5GY177193.0%6831856
VK5IS186998.2%6641180
VK5KX-i5189099.3%312915
VK5LJG181995.5%6641443
VK5LJG-9167187.8%313400
VK5LN137772.3%47716499
VK5LO26413.9%8488135
VK5LO-5153380.5%82411520
VK5NEX177693.3%19331856
VK5NTM186898.1%848407
VK5QI-9183596.4%313524
VK5RK178393.6%2388972
VK5RR30.2%21962273
VK5RR-VK5FO131369.0%6597972
VK5ST-4173791.2%11681103
VK5ST-9115860.8%500426
VK5TRM185097.2%1144972
VK5ZM182896.0%3121180
vk5mhz123064.6%115972438

Horus 58 - HORUSGEIGER Receiver Statistics

CallsignReceived PacketsPercentage of Flight ReceivedFirst-Received Altitude (m)Last-Received Altitude (m)
BARC-RRR172390.3%1623938
VK3OF1869.7%1432518409
VK3TNU pi3-267635.4%2063810493
VK3TNU pi3-391547.9%1265011374
VK5ARG185797.3%717550
VK5DSP-2137271.9%74232113
VK5GY251.3%56326096
VK5LJG182695.7%6921596
VK5LJG-9183896.3%313397
VK5QI-1173891.0%8061859
VK5QI-9181695.1%313423
VK5ST-4185997.4%671911
VK5ST-9117261.4%481397
VK5ZM182495.5%3121125

Receiver Statistics – Wenet Imagery

A special thanks goes to the 7 stations that received and uploaded imagery during the flight, with a few stations setting up to receive both imagery payloads at once. Being able to see live imagery from the flight on https://ssdv.habhub.org/ really adds something special to the experience!

Outward-Facing Imagery

VK5KX-2: 140407 packets (34.28 MB)
VK5QI-9: 127137 packets (31.04 MB)
VK5DSP: 80707 packets (19.70 MB)
VK3TNUpi4-2: 31072 packets (7.59 MB)
VK5CLD: 642 packets (0.16 MB)
VK5PW: 4969 packets (1.21 MB)

Nadir-Facing Imagery

VK5LO: 15495 packets (3.78 MB)
VK5QI-9: 182410 packets (44.53 MB)
VK5PW: 140122 packets (34.21 MB)
VK3TNUpi4-1: 31590 packets (7.71 MB)
VK5KX: 245956 packets (60.05 MB)
VK5DSP: 4614 packets (1.13 MB)

Conclusion

Horus 58 was another highly successful flight, and provided valuable testing for the SHSSP 2023 launch. Thanks again to all who participated in the flight, through helping out at the launch site, chasing, or receiving telemetry.

Stay tuned for a report on the SHSSP 2023 launch!

Horus 58 - Flight Statistics

MetricResult
Flight Designation:Horus 58
Launch Date:2023-01-15 00:03Z
Landing Date:2023-01-15 02:17Z
Flight Duration:~2 hours
Launch Site:-34.02945, 138.69169
Landing Site:-34.23788, 139.13095
Distance Traveled:46.6 km
Maximum Altitude:33,359 m

Next AREG Meeting: Neil VK5KA – Measuring your Transmitter Quality – Friday 17th February

The next AREG meeting is this coming Friday, February the 17th at the Fulham Community Centre – Phelps Court, Fulham.

This month’s presentation will be from Neil Abraham, VK5KA, on the topic of transmitter quality measurements. Neil will cover practical methods of testing and optimising your transmit system, from the audio going into it, to the radio signals coming out of it. If you want to be sure your on-air signal is clean as a whistle, this is a talk not to be missed!

Doors open at 7.15pm and the presentation kicks off at 7.45. Everyone is welcome to attend. If you’ve never come along to one of our meetings, we’d love to see you there, all guests are welcome. For our remote members, the meeting will be broadcast via Zoom!

The presentation will also be live-streamed on Hayden VK7HH’s HamRadioDX Youtube Channel.


After the talks we’ll all be given an opportunity to have an eyeball QSO among ourselves whilst enjoying a tea or coffee and a biscuit.

73, Mark VK5QI

Next AREG Meeting: Holiday Projects Lightning Talks – Friday 20th January

The next AREG meeting is this coming Friday, January the 20th at the Fulham Community Centre – Phelps Court, Fulham.

Lightning Talks

The presentations this month will be a series of ‘Lighting Talks’ (5 minutes hard limit!) from club members, about what projects they have been doing over the holiday break. This could be anything from a (short) presentation on a technical topic, to a live video demonstration of a project they have been building!

Doors open at 7.15pm and the presentation kicks off at 7.45. Everyone is welcome to attend. If you’ve never come along to one of our meetings, we’d love to see you there, all guests are welcome. For our remote members, the meeting will be broadcast via Zoom!

After the talks we’ll all be given an opportunity to have an eyeball QSO among ourselves whilst enjoying a tea or coffee and a biscuit.

73, Mark VK5QI

No January Fox Hunt

AREG regrets to advise that due to several key organising members being unavailable, this month’s fox hunt (usually held on the second Friday night of the month) will not be going ahead.

Stay tuned for details regarding our February hunt, to be posted here soon.

73 from AREG!

Next Project Horus Launch – Horus 58 – NOW Sunday 15th January

UPDATE: Thanks to all that helped out with this launch! 30 stations helped receive the Horus Binary telemetry, and 7 received the Wenet imagery. A writeup of this flight will be finalised in due course.

The AREG’s High-Altitude Ballooning sub-group, Project Horus, is planning their next launch for Sunday the 15th of January, with a planned launch time of 10 AM ACDT.

This launch will most likely be performed from the Auburn Community Oval, with the launch team arriving on site from around 9:15 AM. Spectators are welcome!

This launch aims to flight-test some experimental payloads which will be utilised in the upcoming Southern Hemisphere Space Studies Program. Further information on this program is available at the end of this article.

Tracking of the flight will be via the SondeHub-Amateur tracker, available by clicking this link. There will also be live imagery transmitted throughout the flight (refer further below for decoding details), available here.

A live data dashboard showing telemetry from the various payloads will be available during the flight at this link.

Primary Telemetry – 434.200 MHz

Reprogrammed RS41The primary tracking telemetry will be transmitted on 434.200 MHz using the Horus Binary 4FSK data mode. Amateurs in the Adelaide and Central SA region are also encouraged to get involved with the flight through receiving and uploading flight telemetry from our 70cm band tracking beacons. Every piece of telemetry data is valuable to the flight tracking and recovery teams so if you can help join the distributed receiver network to collect that data you will be making an important contribution to the project!

If you try receiving the telemetry from this flight, you’ll need a SSB-capable 70cm receiver (or a SDR), and the Horus-GUI telemetry decoder software. A brief guide on setting this up is available here: https://github.com/projecthorus/horusdemodlib/wiki/1.1-Horus-GUI-Reception-Guide-(Windows-Linux-OSX)

Listeners that already have Horus-GUI installed are encouraged to update to the latest version, which is available at this link.

Note that you will need to use a USB ‘dial’ frequency of 434.199 MHz for the 4FSK signal to be centred in your receiver passband and hence be decodable.

Experimental Radiation Sensor Payload – 434.210 MHz

An experimental radiation sensor payload, using a Geiger-Muller Tube, will also be launched on this flight. This will be transmitting on 434.210 MHz, also using the Horus Binary 4FSK  data mode. The aim of this payload is to investigate the variation in radiation exposure throughout the flight.

This telemetry can be decoded using the same Horus-GUI software as the primary telemetry. Note that you will need to use a USB ‘dial’ frequency of 434.209 MHz for the 4FSK signal to be centred in your receiver passband and hence be decodable.

Tracking Details – Downward-Facing Imagery – 441.200 MHz

Imagery on this flight will be transmitted via the Wenet downlink system, which uses 115kbit/s Frequency-Shift-Keying to send HD snapshots. Reception of the Wenet imagery requires a Linux computer, a RTLSDR, and a 70cm antenna with some gain (a 5-element Yagi is usually enough).

This flight will be testing a downward-facing camera with a 780nm long-pass Infra-Red filter, which will highlight areas of healthy vegetation.

Infra-Red Filtered Imagery from a previous flight, with white areas indicating vegetation. The parklands surrounding the Adelaide CBD are clearly visible.

A guide on how to get set up to receive the Wenet signal is available here: https://github.com/projecthorus/wenet/wiki/Wenet-RX-Instructions-(Linux-using-Docker)

Please note the transmit frequency of 441.2 MHz, which may require listeners to re-configure their Wenet setup. Listeners who are already setup to receive Wenet should consider updating their decoding software to the latest version (December 2022), with update instructions available here.

During the flight, the live imagery will be available at this link: http://ssdv.habhub.org/

Tracking Details – Outward-Facing Imagery – 443.500 MHz

As a late addition, there will be a second imagery payload running on 443.500 MHz. This is a re-flight of our usual imagery payload, with the cameras pointing towards the horizon. Hopefully we can capture some images of the Riverland from this payload.

If you have the capability of running 2 receivers, please consider receiving this payload as well, but please prioritise receiving the payload on 441.200 MHz.

Southern Hemisphere Space Studies Program Launch – Late January 2023

AREG is pleased to once again be involved with the International Space University’s Southern Hemisphere Space Studies Program hosted by the University of South Australia. AREG members will be running a High-Altitude Balloon project as part of this course, culminating in a High-Altitude Balloon launch, currently planned for the 28th of January 2023 from the Auburn area.

This launch will be flying multiple payloads, including:

  • 2x Horus Binary Telemetry Payloads, most likely on 434.200 MHz and 434.210 MHz (same as Horus 58)
  • A downward-looking Wenet imagery payload on 441.200 MHz.
  • A horizon-looking Wenet imagery payload on 443.500 MHz.

Given the many payloads on this flight we would greatly appreciate the assistance of the local amateur radio community in receiving telemetry! In particular, the more Wenet receiver stations we have running the higher the chance of downlinking complete images from the two imagery payloads.